Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.64-69
/
2022
Commercialization of public technology is the transfer of government-led scientific and technological innovation and R&D results to the private sector, and is recognized as a key achievement driving economic growth. Therefore, in order to activate technology transfer, various machine learning methods are being studied to identify success factors or to match public technology with high commercialization potential and demanding companies. However, public technology commercialization data is in the form of a table and has a problem that machine learning performance is not high because it is in an imbalanced state with a large difference in success-failure ratio. In this paper, we present a method of utilizing CTGAN to resolve imbalances in public technology data in tabular form. In addition, to verify the effectiveness of the proposed method, a comparative experiment with SMOTE, a statistical approach, was performed using actual public technology commercialization data. In many experimental cases, it was confirmed that CTGAN reliably predicts public technology commercialization success cases.
Purpose: In 2020, the franchise industry accomplished a significant growth compared to the previous year, as the number of franchise companies increased by 9.0% while the number of franchise brands increased by 12.5%. Despite growth in size, the Korean franchise industry underwent many negative incidents, such as franchise ownership sales to private equity funds, that led to deterioration of businesses. From this point of view, this study aims to make various proposals to help policy makers develop franchise industry policies by analyzing trends of the current and previous presidential administrations' franchise policies and regulations using newspaper articles. Research design, data and methodology: A total of 7,439 articles registered in Naver API from February 25, 2013 to November 29, 2021 were extracted. Among them, 34 unrelated video articles were deleted, and a total of 7,405 articles from both administrations were used for analysis. The R package was used for word frequency analysis, word clouding, word correlation analysis, and LDA (Latent Dirichlet Allocation) topic modeling. Results: The keyword frequency analysis shows that the most frequently mentioned keywords during the previous administration include 'no-brand', 'major company', 'bill', 'business field', and 'SMEs', and those mentioned during the current administration include 'industry' and 'policy'. As a result of LDA topic modeling, 9 topics such as 'global startups' and 'job creation' from the previous administration, and 10 topics such as 'franchise business' and 'distribution industry' from the current administration were derived. The results of LDAvis showed that the previous administration operated a policy based on mutual growth of large and small businesses rather than hostile regulations in the franchise business, whereas the current administration extended the regulation related to franchise business to the employment sector. Conclusions: The analysis of past two administrations' franchise policy, it can be suggested that franchisors and franchisees may complement each other in developing the Fair Transactions in Franchise Business Act and achieving balanced growth. Moreover, political support is needed for sound development of franchisors. Limitations and future research suggestions are presented at the end of this study.
The fundamental basis of AI technology is learningable data. Recently, the types and amounts of data collected and produced by the government or private companies are increasing exponentially, however, verified data that can be used for actual machine learning has not yet led to it. This study discusses the conditions that data actually can be used for machine learning should meet, and identifies factors that degrade data quality through case studies. To this end, two representative cases of developing a prediction model using public big data was selected, and data for actual problem solving was collected from the public data portal. Through this, there is a difference from the results of applying valid data screening criteria and post-processing. The ultimate purpose of this study is to argue the importance of data quality management that must be most fundamentally preceded before the development of machine learning technology, which is the core of artificial intelligence, and accumulating valid data.
Hui-Chen Tsai;Julia Yu-Fong Chang;Chia-Chun Tu;Chung-Chen Jane Yao
The korean journal of orthodontics
/
v.53
no.2
/
pp.125-136
/
2023
Before progress was recently made in the application of temporary anchorage devices (TADs) in bio-mechanical design, orthodontists were rarely able to intrude molars to reduce upper posterior dental height (UPDH). However, TADs are now widely used to intrude molars to flatten the occlusal plane or induce counterclockwise rotation of the mandible. Previous studies involving clinical or animal histological evaluation on changes in periodontal conditions after molar intrusion have been reported, however, studies involving human histology are scarce. This case was a Class I malocclusion with a high mandibular plane angle. Upper molar intrusion with TADs was performed to reduce UPDH, which led to counterclockwise rotation of the mandible. After 5 months of upper molar intrusion, shortened clinical crowns were noticed, which caused difficulties in oral hygiene and hindered orthodontic tooth movement. The mid-treatment cone-beam computed tomography revealed redundant bone physically interfering with buccal attachment and osseous resective surgeries were followed. During the surgeries, bilateral mini screws were removed and bulging alveolar bone and gingiva were harvested for biopsy. Histological examination revealed bacterial colonies at the bottom of the sulcus. Infiltration of chronic inflammatory cells underneath the non-keratinized sulcular epithelium was noted, with abundant capillaries being filled with red blood cells. Proximal alveolar bone facing the bottom of the gingival sulcus exhibited active bone remodeling and woven bone formation with plump osteocytes in the lacunae. On the other hand, buccal alveolar bone exhibited lamination, indicating slow bone turnover in the lateral region.
The Journal of Korean Institute of Next Generation Computing
/
v.13
no.5
/
pp.80-92
/
2017
The popularity of cloud computing has led to the emergence of various types of cloud services, and the hybrid cloud, a deployment model that integrates public cloud and private cloud and offset their shortcomings, is in the spotlight recently. However, the complexity of different clouds integration and the lack of related integration solutions have delayed the adoption of hybrid cloud and cloud strategy by companies and organizations. Therefore, in this paper, we propose a cloud integration mechanism to solve the integration complexity problem. The cloud integration mechanism proposed in this paper consists of integration script that solves the cloud integration by the script based on the hybrid cloud function, a process of creating and executing it, and a script creation model applying the software design pattern. By integrating the various cloud services, we can quickly generate scripts that meet the user's needs. It is expected that the introduction of hybrid cloud and the acquisition of cloud strategy can be accelerated through this proposed integration mechanism.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.647-654
/
2023
Deep Learning is a useful method for classifying and recognizing complex data such as images and text, and the accuracy of the deep learning method is the basis for making artificial intelligence-based services on the Internet useful. However, the vast amount of user da vita used for training in deep learning has led to privacy violation problems, and it is worried that companies that have collected personal and sensitive data of users, such as photographs and voices, own the data indefinitely. Users cannot delete their data and cannot limit the purpose of use. For example, data owners such as medical institutions that want to apply deep learning technology to patients' medical records cannot share patient data because of privacy and confidentiality issues, making it difficult to benefit from deep learning technology. In this paper, we have designed a privacy preservation technique-applied deep learning technique that allows multiple workers to use a neural network model jointly, without sharing input datasets, in multi-party system. We proposed a method that can selectively share small subsets using an optimization algorithm based on modified stochastic gradient descent, confirming that it could facilitate training with increased learning accuracy while protecting private information.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.3
/
pp.41-58
/
2023
This study identifies the commercialization success factors that can be an important indicator for the transfer and commercialization of national R&D results in the agricultural sector. Unlike other industries, the agricultural sector has a non-systematically scaled and processed industrial structure, and R&D is led by government rather than the private sector. Although the quantitative performance of national agricultural R&D, especially the number of patents and publications, has increased rapidly with the quantitative expansion of the government R&D budget, the technology commercialization of the results of agricultural R&D has been accompanied by difficulties for SMEs. Therefore, this study summarized the success factors for commercialization of state-owned technologies presented in previous studies, and based on them, analysed the success factors for commercialization specific to the agricultural sector. It also conducted a questionnaire survey using Delphi and focus group interviews (FGI) with experts from academia, research and industry, and a survey of agricultural companies to derive success factors for commercialization in the agricultural sector using logistic regression analysis. As a result, five indicators with positive correlation and three indicators with negative correlation within technology characteristics, suppliers, adopters, policy and market factors were finally derived as key factors for agricultural commercialization. In the future, it is expected that independent factor analysis of the food and seed sectors, which have independent industry characteristics from the agricultural sector, will be needed.
Efforts are being made to respond to global warming. Interest in and demand for the private sector-led RE100 campaign is also increasing. Self-built solar power generation, one of the implementation tools for RE100, is not expanding. However, it can be an economical means of implementation in the long run. In this study, we intend to analyze the impact on the optimal ratio of self-solar power generation using HOMER simulation. OPR defines the optimal solar power generation ratio and looks into what changes there are in the optimal solar power ratio when self-power consumption increases and external power purchase price changes. As a result, the optimal rate of self-solar power generation has a low impact even if self-power consumption increases. As the external power unit price increases, the optimal ratio increases, and at a power unit price of 100 KRW/kWh, OPR is 24%; at 200 KRW/kWh OPR is 31%; and at 300 KRW/kWh OPR is 34%. This shows that the electricity price replaced during the life cycle has a high impact on the economic feasibility of solar power generation. However, when the external power unit price reached a certain level, the increase in OPR decreased. This shows that it is difficult for domestic companies to achieve RE100 based on the economic feasibility of solar energy alone. Therefore, efforts are needed to supply renewable energy in the public sector.
Purpose - Since COVID-19, the government's expansion of liquidity to stimulate the economy has resulted in an increase in private debt and an increase in asset prices of such as real estate and stocks. The recent sharp rise of the US Federal fund rate and tapering by the Fed have led to a fast rise in domestic interest rates, putting a heavy burden on the Korean economy, where the level of household debt is very high. Excessive household debt might have negative effects on the economy, such as shrinking consumption, economic recession, and deepening economic inequality. Therefore, now more than ever, it is necessary to identify the causes of the increase in household debt. Design/methodology/approach - Main methodology is regression analysis. Dependent variable is household loans from depository institutions. Independent variables are consumer price index, unemployment rate, household loan interest rate, housing sales price index, and composite stock price index. The sample periods are from 2017 to May 2022, comprising 72 months of data. The comparative analysis period before and after COVID-19 is from January 2017 to December 2019 for the pre-COVID-19 period, and from Jan 2020 to December 2022 for the post-COVID-19 period. Findings - Looking at the results of the regression analysis for the entire period, it was found that increases in the consumer price index, unemployment rate, and household loan interest rates decrease household loans, while increases in the housing sales price index increase household loans. Research implications or Originality - Household loans of depository institutions are mainly made up of high-credit and high-income borrowers with good repayment ability, so the risk of the financial system is low. As household loans are closely linked to the real estate market, the risk of household loan defaults may increase if real estate prices fall sharply.
In Korea, there are many attempts to automate architectural design tasks, focusing on government-led national R&D projects and private operators, in order to enhance global competitiveness and productivity of the building service industry. However, according to a survey of architectural design office practitioners, only 25% (9 out of 37) have used it, suggesting that there are fewer cases of practical use in the field compared to research and investment in automation technology development, and there are discrepancies between automation and technology development items required in the field. In this study, the priority of automation of planning and design work of architectural design office practitioners is derived, and a comparative analysis is conducted with domestic architectural design automation service items based on the priority. A survey was conducted on practitioners of domestic architectural design offices to derive automation priorities for 19 items of architectural planning and design work. Based on the derived priorities, the degree of reflection of the working-level automation needs of domestic services was confirmed by comparing them with the domestic architectural planning and design automation service items. As a result, it was confirmed that domestic architectural planning and design automation services did not properly reflect the priority of planning and design work automation of architectural design office practitioners. This suggests that it is necessary to reflect the priorities derived in this study in technology development in order to increase the cases of practical use of the automation technology in the working environment and improve the productivity of service.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.