• Title/Summary/Keyword: Privacy-preserving clustering

Search Result 14, Processing Time 0.017 seconds

Practical Privacy-Preserving DBSCAN Clustering Over Horizontally Partitioned Data (다자간 환경에서 프라이버시를 보호하는 효율적인 DBSCAN 군집화 기법)

  • Kim, Gi-Sung;Jeong, Ik-Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2010
  • We propose a practical privacy-preserving clustering protocol over horizontally partitioned data. We extend the DBSCAN clustering algorithm into a distributed protocol in which data providers mix real data with fake data to provide privacy. Our privacy-preserving clustering protocol is very efficient whereas the previous privacy-preserving protocols in the distributed environments are not practical to be used in real applications. The efficiency of our privacy-preserving clustering protocol over horizontally partitioned data is comparable with those of privacy-preserving clustering protocols in the non-distributed environments.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.

Augmented Rotation-Based Transformation for Privacy-Preserving Data Clustering

  • Hong, Do-Won;Mohaisen, Abedelaziz
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2010
  • Multiple rotation-based transformation (MRBT) was introduced recently for mitigating the apriori-knowledge independent component analysis (AK-ICA) attack on rotation-based transformation (RBT), which is used for privacy-preserving data clustering. MRBT is shown to mitigate the AK-ICA attack but at the expense of data utility by not enabling conventional clustering. In this paper, we extend the MRBT scheme and introduce an augmented rotation-based transformation (ARBT) scheme that utilizes linearity of transformation and that both mitigates the AK-ICA attack and enables conventional clustering on data subsets transformed using the MRBT. In order to demonstrate the computational feasibility aspect of ARBT along with RBT and MRBT, we develop a toolkit and use it to empirically compare the different schemes of privacy-preserving data clustering based on data transformation in terms of their overhead and privacy.

Mitigating the ICA Attack against Rotation-Based Transformation for Privacy Preserving Clustering

  • Mohaisen, Abedelaziz;Hong, Do-Won
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.868-870
    • /
    • 2008
  • The rotation-based transformation (RBT) for privacy preserving data mining is vulnerable to the independent component analysis (ICA) attack. This paper introduces a modified multiple-rotation-based transformation technique for special mining applications, mitigating the ICA attack while maintaining the advantages of the RBT.

  • PDF

Noise Averaging Effect on Privacy-Preserving Clustering of Time-Series Data (시계열 데이터의 프라이버시 보호 클러스터링에서 노이즈 평준화 효과)

  • Moon, Yang-Sae;Kim, Hea-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.356-360
    • /
    • 2010
  • Recently, there have been many research efforts on privacy-preserving data mining. In privacy-preserving data mining, accuracy preservation of mining results is as important as privacy preservation. Random perturbation privacy-preserving data mining technique is known to well preserve privacy. However, it has a problem that it destroys distance orders among time-series. In this paper, we propose a notion of the noise averaging effect of piecewise aggregate approximation(PAA), which can be preserved the clustering accuracy as high as possible in time-series data clustering. Based on the noise averaging effect, we define the PAA distance in computing distance. And, we show that our PAA distance can alleviate the problem of destroying distance orders in random perturbing time series.

Privacy-Preserving Clustering on Time-Series Data Using Fourier Magnitudes (시계열 데이타 클러스터링에서 푸리에 진폭 기반의 프라이버시 보호)

  • Kim, Hea-Suk;Moon, Yang-Sae
    • Journal of KIISE:Databases
    • /
    • v.35 no.6
    • /
    • pp.481-494
    • /
    • 2008
  • In this paper we propose Fourier magnitudes based privacy preserving clustering on time-series data. The previous privacy-preserving method, called DFT coefficient method, has a critical problem in privacy-preservation itself since the original time-series data may be reconstructed from privacy-preserved data. In contrast, the proposed DFT magnitude method has an excellent characteristic that reconstructing the original data is almost impossible since it uses only DFT magnitudes except DFT phases. In this paper, we first explain why the reconstruction is easy in the DFT coefficient method, and why it is difficult in the DFT magnitude method. We then propose a notion of distance-order preservation which can be used both in estimating clustering accuracy and in selecting DFT magnitudes. Degree of distance-order preservation means how many time-series preserve their relative distance orders before and after privacy-preserving. Using this degree of distance-order preservation we present greedy strategies for selecting magnitudes in the DFT magnitude method. That is, those greedy strategies select DFT magnitudes to maximize the degree of distance-order preservation, and eventually we can achieve the relatively high clustering accuracy in the DFT magnitude method. Finally, we empirically show that the degree of distance-order preservation is an excellent measure that well reflects the clustering accuracy. In addition, experimental results show that our greedy strategies of the DFT magnitude method are comparable with the DFT coefficient method in the clustering accuracy. These results indicate that, compared with the DFT coefficient method, our DFT magnitude method provides the excellent degree of privacy-preservation as well as the comparable clustering accuracy.

Privacy-Preserving k-means Clustering of Encrypted Data (암호화된 데이터에 대한 프라이버시를 보존하는 k-means 클러스터링 기법)

  • Jeong, Yunsong;Kim, Joon Sik;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1401-1414
    • /
    • 2018
  • The k-means clustering algorithm groups input data with the number of groups represented by variable k. In fact, this algorithm is particularly useful in market segmentation and medical research, suggesting its wide applicability. In this paper, we propose a privacy-preserving clustering algorithm that is appropriate for outsourced encrypted data, while exposing no information about the input data itself. Notably, our proposed model facilitates encryption of all data, which is a large advantage over existing privacy-preserving clustering algorithms which rely on multi-party computation over plaintext data stored on several servers. Our approach compares homomorphically encrypted ciphertexts to measure the distance between input data. Finally, we theoretically prove that our scheme guarantees the security of input data during computation, and also evaluate our communication and computation complexity in detail.

Privacy-Preserving k-Bits Inner Product Protocol (프라이버시 보장 k-비트 내적연산 기법)

  • Lee, Sang Hoon;Kim, Kee Sung;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 2013
  • The research on data mining that can manage a large amount of information efficiently has grown with the drastic increment of information. Privacy-preserving data mining can protect the privacy of data owners. There are several privacy-preserving association rule, clustering and classification protocols. A privacy-preserving association rule protocol is used to find association rules among data, which is often used for marketing. In this paper, we propose a privacy-preserving k-bits inner product protocol based on Shamir's secret sharing.

Privacy-Preserving K-means Clustering using Homomorphic Encryption in a Multiple Clients Environment (다중 클라이언트 환경에서 동형 암호를 이용한 프라이버시 보장형 K-평균 클러스터링)

  • Kwon, Hee-Yong;Im, Jong-Hyuk;Lee, Mun-Kyu
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.7-17
    • /
    • 2019
  • Machine learning is one of the most accurate techniques to predict and analyze various phenomena. K-means clustering is a kind of machine learning technique that classifies given data into clusters of similar data. Because it is desirable to perform an analysis based on a lot of data for better performance, K-means clustering can be performed in a model with a server that calculates the centroids of the clusters, and a number of clients that provide data to server. However, this model has the problem that if the clients' data are associated with private information, the server can infringe clients' privacy. In this paper, to solve this problem in a model with a number of clients, we propose a privacy-preserving K-means clustering method that can perform machine learning, concealing private information using homomorphic encryption.

Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles

  • Zilong Jin;Jin Wang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1462-1477
    • /
    • 2024
  • With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.