• Title/Summary/Keyword: Privacy issue

Search Result 219, Processing Time 0.026 seconds

A Privacy Preserving Authentication Mechanism for Wireless Mesh Networks

  • Islam, Shariful;Hamid, Abdul;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.556-559
    • /
    • 2007
  • Due to its ease of deployment, low cost, self-configuring and self-healing capabilities, Wireless Mesh Networks (WMNs) have emerged as a key technology to be used in a wide scale applications in personal, local, campus, and metropolitan areas. Security and more specifically privacy is an important issue in this type of multi-hop WMN which has given a little attention in the research community. We focus on privacy compromise of a mesh client in a community mesh network that may lead an attacker to reveal mesh clients identity. his other profiles and gain information about mobility. In this paper. we have presented an authentication mechanism with the aid of blind signature that ensures a mesh client to anonymously authenticate itself with a nearby mesh router and thereby preserve identity privacy We have also presented the security and performance analysis of the proposed scheme.

  • PDF

Security, Privacy, and Efficiency of Sustainable Computing for Future Smart Cities

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Sustainable computing is a rapidly expanding field of research covering the fields of multidisciplinary engineering. With the rapid adoption of Internet of Things (IoT) devices, issues such as security, privacy, efficiency, and green computing infrastructure are increasing day by day. To achieve a sustainable computing ecosystem for future smart cities, it is important to take into account their entire life cycle from design and manufacturing to recycling and disposal as well as their wider impact on humans and the places around them. The energy efficiency aspects of the computing system range from electronic circuits to applications for systems covering small IoT devices up to large data centers. This editorial focuses on the security, privacy, and efficiency of sustainable computing for future smart cities. This issue accepted 17 articles after a rigorous review process.

Privacy Enhanced Data Security Mechanism in a Large-Scale Distributed Computing System for HTC and MTC

  • Rho, Seungwoo;Park, Sangbae;Hwang, Soonwook
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.6-11
    • /
    • 2016
  • We developed a pilot-job based large-scale distributed computing system to support HTC and MTC, called HTCaaS (High-Throughput Computing as a Service), which helps scientists solve large-scale scientific problems in areas such as pharmaceutical domains, high-energy physics, nuclear physics and bio science. Since most of these problems involve critical data that affect the national economy and activate basic industries, data privacy is a very important issue. In this paper, we implement a privacy enhanced data security mechanism to support HTC and MTC in a large-scale distributed computing system and show how this technique affects performance in our system. With this mechanism, users can securely store data in our system.

Merging Collaborative Learning and Blockchain: Privacy in Context

  • Rahmadika, Sandi;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.228-230
    • /
    • 2020
  • The emergence of collaborative learning to the public is to tackle the user's privacy issue in centralized learning by bringing the AI models to the data source or client device for training Collaborative learning employs computing and storage resources on the client's device. Thus, it is privacy preserved by design. In harmony, blockchain is also prominent since it does not require an intermediary to process a transaction. However, these approaches are not yet fully ripe to be implemented in the real world, especially for the complex system (several challenges need to be addressed). In this work, we present the performance of collaborative learning and potential use case of blockchain. Further, we discuss privacy issues in the system.

Reliable blockchain-based ring signature protocol for online financial transactions

  • Jinqi Su;Lin He;Runtao Ren;Qilei Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2083-2100
    • /
    • 2023
  • The rise of Industry 5.0 has led to a smarter and more digital way of doing business, but with it comes the issue of user privacy and security. Only when privacy and security issues are addressed, will users be able to transact online with greater peace of mind. Thus, to address the security and privacy problems associated with industry blockchain technology, we propose a privacy protection scheme for online financial transactions based on verifiable ring signatures and blockchain by comparing and combining the unconditional anonymity provided by ring signatures with the high integrity provided by blockchain technology. Firstly, we present an algorithm for verifying ring signature based on distributed key generation, which can ensure the integrity of transaction data. Secondly, by using the block chain technique, we choose the proxy node to send the plaintext message into the block chain, and guarantee the security of the asset transaction. On this basis, the designed scheme is subjected to a security analysis to verify that it is completely anonymous, verifiable and unerasable. The protection of user privacy can be achieved while enabling online transactions. Finally, it is shown that the proposed method is more effective and practical than other similar solutions in performance assessment and simulation. It is proved that the scheme is a safe and efficient online financial transaction ring signature scheme.

Machine Learning-Based Reversible Chaotic Masking Method for User Privacy Protection in CCTV Environment

  • Jimin Ha;Jungho Kang;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.767-777
    • /
    • 2023
  • In modern society, user privacy is emerging as an important issue as closed-circuit television (CCTV) systems increase rapidly in various public and private spaces. If CCTV cameras monitor sensitive areas or personal spaces, they can infringe on personal privacy. Someone's behavior patterns, sensitive information, residence, etc. can be exposed, and if the image data collected from CCTV is not properly protected, there can be a risk of data leakage by hackers or illegal accessors. This paper presents an innovative approach to "machine learning based reversible chaotic masking method for user privacy protection in CCTV environment." The proposed method was developed to protect an individual's identity within CCTV images while maintaining the usefulness of the data for surveillance and analysis purposes. This method utilizes a two-step process for user privacy. First, machine learning models are trained to accurately detect and locate human subjects within the CCTV frame. This model is designed to identify individuals accurately and robustly by leveraging state-of-the-art object detection techniques. When an individual is detected, reversible chaos masking technology is applied. This masking technique uses chaos maps to create complex patterns to hide individual facial features and identifiable characteristics. Above all, the generated mask can be reversibly applied and removed, allowing authorized users to access the original unmasking image.

A Study on the Possibility of Self-Correction in the Market for Protecting Internet Privacy (인터넷 개인정보보호의 시장자체해결가능성에 대한 연구)

  • Chung, Sukkyun
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.27-37
    • /
    • 2012
  • Internet privacy has become a significant issue in recent years in light of the sharp increase in internet-based social and economic activities. The technology which collects, processes and disseminates personal information is improving significantly and the demand for personal information is rising given its inherent value in regard to targeted marketing and customized services. The high value placed on personal information has turned it into a commodity with economic worth which can be transacted in the marketplace. Therefore, it is strongly required to approach the issue of privacy from economic perspective in addition to the prevailing approaches. This article analyzes the behaviors of consumers and firms in gathering personal information, and shielding it from unauthorized access, using a game theory framework in which players strive to do their best under the given conditions. The analysis shows that there exist no market forces which require all firms to respect consumer privacy, and that government intervention in the form of a nudging incentive for information sharing and/or strict regulation is necessary.

The Online Privacy Policy: Recognition, Confirmation and its Effects on Online Transaction Behavior (인터넷 이용자의 개인정보 처리방침에 대한 인지 및 확인과 온라인 거래 행동)

  • Jang, Wonchang;Shin, Ilsoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1419-1427
    • /
    • 2012
  • This paper deals with the online privacy policy, which is designed to solve the information asymmetry problem between websites and internet users. We empirically analyze the recognition, confirmation of the online privacy policy, and its effects on online transaction behavior using a rich survey data representing 5,422 Korean internet users. Major results are as follows. First, there exists a significant difference between recognition and confirmation, and confirmation behavior is positively related with the importance of privacy issue and the experience of privacy invasion. Second, binary variable regressions show that internet user tends to participate in online transaction if he/she confirms the online privacy policy positively. Finally, if websites would make online privacy policy easy and short, a yearly online transaction market size of Korea would increase by 0.46 million participants and 22.4 billion KRW.

Privacy-Preserving in the Context of Data Mining and Deep Learning

  • Altalhi, Amjaad;AL-Saedi, Maram;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.137-142
    • /
    • 2021
  • Machine-learning systems have proven their worth in various industries, including healthcare and banking, by assisting in the extraction of valuable inferences. Information in these crucial sectors is traditionally stored in databases distributed across multiple environments, making accessing and extracting data from them a tough job. To this issue, we must add that these data sources contain sensitive information, implying that the data cannot be shared outside of the head. Using cryptographic techniques, Privacy-Preserving Machine Learning (PPML) helps solve this challenge, enabling information discovery while maintaining data privacy. In this paper, we talk about how to keep your data mining private. Because Data mining has a wide variety of uses, including business intelligence, medical diagnostic systems, image processing, web search, and scientific discoveries, and we discuss privacy-preserving in deep learning because deep learning (DL) exhibits exceptional exactitude in picture detection, Speech recognition, and natural language processing recognition as when compared to other fields of machine learning so that it detects the existence of any error that may occur to the data or access to systems and add data by unauthorized persons.

A Mutual P3P Methodology for Privacy Preserving Context-Aware Systems Development (프라이버시 보호 상황인식 시스템 개발을 위한 쌍방향 P3P 방법론)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.18 no.1
    • /
    • pp.145-162
    • /
    • 2008
  • One of the big concerns in e-society is privacy issue. In special, in developing robust ubiquitous smart space and corresponding services, user profile and preference are collected by the service providers. Privacy issue would be more critical in context-aware services simply because most of the context data themselves are private information: user's current location, current schedule, friends nearby and even her/his health data. To realize the potential of ubiquitous smart space, the systems embedded in the space should corporate personal privacy preferences. When the users invoke a set of services, they are asked to allow the service providers or smart space to make use of personal information which is related to privacy concerns. For this reason, the users unhappily provide the personal information or even deny to get served. On the other side, service provider needs personal information as rich as possible with minimal personal information to discern royal and trustworthy customers and those who are not. It would be desirable to enlarge the allowable personal information complying with the service provider's request, whereas minimizing service provider's requiring personal information which is not allowed to be submitted and user's submitting information which is of no value to the service provider. In special, if any personal information required by the service provider is not allowed, service will not be provided to the user. P3P (Platform for Privacy Preferences) has been regarded as one of the promising alternatives to preserve the personal information in the course of electronic transactions. However, P3P mainly focuses on preserving the buyers' personal information. From time to time, the service provider's business data should be protected from the unintended usage from the buyers. Moreover, even though the user's privacy preference could depend on the context happened to the user, legacy P3P does not handle the contextual change of privacy preferences. Hence, the purpose of this paper is to propose a mutual P3P-based negotiation mechanism. To do so, service provider's privacy concern is considered as well as the users'. User's privacy policy on the service provider's information also should be informed to the service providers before the service begins. Second, privacy policy is contextually designed according to the user's current context because the nomadic user's privacy concern structure may be altered contextually. Hence, the methodology includes mutual privacy policy and personalization. Overall framework of the mechanism and new code of ethics is described in section 2. Pervasive platform for mutual P3P considers user type and context field, which involves current activity, location, social context, objects nearby and physical environments. Our mutual P3P includes the privacy preference not only for the buyers but also the sellers, that is, service providers. Negotiation methodology for mutual P3P is proposed in section 3. Based on the fact that privacy concern occurs when there are needs for information access and at the same time those for information hiding. Our mechanism was implemented based on an actual shopping mall to increase the feasibility of the idea proposed in this paper. A shopping service is assumed as a context-aware service, and data groups for the service are enumerated. The privacy policy for each data group is represented as APPEL format. To examine the performance of the example service, in section 4, simulation approach is adopted in this paper. For the simulation, five data elements are considered: $\cdot$ UserID $\cdot$ User preference $\cdot$ Phone number $\cdot$ Home address $\cdot$ Product information $\cdot$ Service profile. For the negotiation, reputation is selected as a strategic value. Then the following cases are compared: $\cdot$ Legacy P3P is considered $\cdot$ Mutual P3P is considered without strategic value $\cdot$ Mutual P3P is considered with strategic value. The simulation results show that mutual P3P outperforms legacy P3P. Moreover, we could conclude that when mutual P3P is considered with strategic value, performance was better than that of mutual P3P is considered without strategic value in terms of service safety.