• Title/Summary/Keyword: Printing parameter

Search Result 51, Processing Time 0.022 seconds

Identification of Pick up Sound for Laser printers Based on Psychoacoustic Parameters (심리음향의 음질요소를 이용한 레이저 프린터 급지 이음 평가 및 부품 조합 최적화)

  • Lee, Young-Jun;Shin, Tae-Jin;You, Jin;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.853-860
    • /
    • 2012
  • This paper identifies a cause of pick up noise in a laser printer and a relationship between pick up noise and major components related to pick up noise. A pick up sound is affected by many components such as spring force, spring constant, and friction coefficient. Objective evaluation for the pick up sound is difficult because of back ground sound such as operating sound. Especially, a sound between a friction pad and a paper in the process of printing has become an essential issue in an aspect of quality evaluation. However the existing criteria for determining the above sound have solely relied on human's subjective judgments; which highlights the requirement to objectify these criteria. In this paper, the standard of existing pick up noise is established by finding the tonality, which is a psychoacoustic parameter, of noticeable limit sound level. Based on the findings of the method, the study has found factors which cause pick up noise and suggests the substitution of following components of printers such as spring constants, spring force, and the quality of friction pads. As a result, it is confirmed that the proposed pick up noise index has usefulness to classify whether existence of pick up noise with an objective evaluation and not to occur the noise based on design optimized combination of laser printer components.

Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects

  • Lee, Younghun;Lee, Sungho;Zhao, Xing Guan;Lee, Dongoh;Kim, Taemin;Jung, Hoeryong;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • In the last decade, there has been an exponential increase of scientific interest in smart additive manufacturing (AM) technology. Among the different AM techniques, one of the most commonly applied processes is digital light processing (DLP). DLP uses a digital projector screen to flash an ultraviolet light which cures photopolymer resins. The resin is cured to form a solid to produce parts with precise high dimensional accuracy. During the curing process, there are several process parameters that need to be optimized. Among these, the exposure time affects the quality of the 3D printed specimen such as mechanical strength and dimensional accuracy. This study examines optimal exposure times and their impact on printed part. It was found that there is optimal exposure time for printed part to have appropriate mechanical strength and accurate dimensions. The gel fraction and TGA test results confirmed that the improvement of mechanical properties with the increasing UV exposure time was due to the increase of crosslinked network formation with UV exposure time in acrylic resins. In addition, gel fraction and thermogravimetric analysis were employed to microscopically investigate how this process parameter impacts mechanical performance.

Microwave assisted processing of silver thick films for microelectronic applications

  • Rane, Sunit;Bhatkar, Rushna;Mulik, Uttam;Amalnerkar, Dinesh
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • This paper aims to focus on the microwave processing of thick films which is a fast, cheap technique and could be the alternative to the currently used conventional high temperature processing technique. Microwave processing has gained worldwide acceptance as a novel method for heating and sintering a variety of materials, as it offers specific advantages in terms of speed, energy efficiency, process simplicity, finer microstructures and lower environmental hazards. Silver conducting thick films were prepared and processed in the household microwave oven. The films sintered at different time period by keeping the other parameter such as microwave power, film thickness etc constant. The microstructure analysis revealed that the surface morphology of the microwave processed films become compact with respect to the processing time. The sheet resistance for microwave sintered silver films is in the range of 0.003 to $1.207{\Omega}/{\Box}$ where as the films fired at 750 and $850^{\circ}C$ showed the resistance of 0.009 and $0.003{\Omega}/{\Box}$ which can be comparable. The results revealed that the microstructure of the microwave sintered films has more uniform and compact surface than that of the conventionally fired films. The paper reports upon the preparation of silver thick film by screen printing technique and processing the same by microwave which also compared with the conventionally processed thick films.

Identification and Optimization of Dominant Process Parameters Affecting Mechanical Properties of FDM 3D Printed Parts (압출적층조형 공정 기반 3D 프린팅 제품 기계적 특성의 지배적 공정인자 도출 및 최적화에 관한 연구)

  • Kim, Jung Sub;Jo, Nanhyeon;Nam, Jung Soo;Lee, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.607-612
    • /
    • 2017
  • Recently, additive manufacturing (AM) technology, also known as 3D printing technology, has attracted attention as an innovative production method to fabricate functional components having complex shapes with saving materials. In particular, a fabrication of poly lactic acid (PLA) parts through a fused deposition modeling (FDM) technique has attracted much attention in the medical field. In this paper, an experimental study on the identification of dominant process parameters influencing mechanical properties of PLA parts fabricated by the FDM process is conducted, and their optimal values for maximizing the mechanical properties are obtained. Three process parameters are considered in this research, namely, layer thickness, a part orientation and in-fill. It is known that thin layer thickness, part orientation diagonal to the tension direction, and full in-fill are optimal conditions to maximize the mechanical properties.

Development of a Management System for Image and Personal Information for the Development of a Standard Brain for Diverse Koreans (다양한 한국인의 표준뇌를 개발하기 위한 영상 및 개인정보 관리 시스템의 개발)

  • 정순철;최도영;이정미;박현욱;손진훈
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to establish a reference for image acquisition for completion of a standard brain for diverse Korean population, and to develop a management system that saves and manage database of the acquired brain image and personal information of those who were tested. 3D MP-RAGE technique, which has excellent SNR and CNR and reduces the times for image acquisition, was selected for anatomical Image acquisition, and parameter values were obtained for the optimal image acquisition. The database management system was devised to obtain not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory questionnaires of Sasang Constitution Mini-Mental State Examination, intelligence test, and personality test via a survey questionnaire and to save and manage the results of the tests. In addition, this system was designed to have functions of saving, inserting, deleting, searching, and Printing of image da a and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain of diverse Korean population in that it can save and manage their image date and personal information.

Key Parameter of Peel-off Test for Reliability Assessment of Toner Film (토너 박막의 신뢰성 평가를 위한 Peel-off Test의 주요인자)

  • Kim, Kwang-Il;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1567-1573
    • /
    • 2010
  • In printing systems, the reliability of printed material depends on the ability of the toner film to remain adhered to the paper surface. In order to measure the strength between the toner film and the paper surface, a peel-off test is often performed. After conducting the test, the amount of toner film remaining on the paper is measured in order to determine the interfacial strength. The results of this test can be affected by many factors such as the peeling rate, weight of the roller used, and dwell time of tape. Sensitivity analysis was performed with respect to peeling rate, weight of roller and dwell time of tape at different levels. It was found that the interfacial strength increased with an increase in these main parameters. On the other hand, the trend with respect to the percentage of toner loss was different. Further, the interfacial strength and percentage of toner loss were significantly affected by the peeling rate.

Impact of Energy Density and Bead Overlap Ratio of a SUS316L Specimen Fabricated using Selective Laser Melting on Mechanical Characteristics (선택적 레이저 용융 공정으로 제작된 시편의 SUS316L 에너지밀도 및 비드 중첩률에 따른 기계적 특성 변화 분석)

  • Lee, Dong Wook;Kim, Woo Sung;Sung, Ji Hyun;Kim, Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-51
    • /
    • 2021
  • Investigations of process parameters are essential when fabricating high-quality parts using additive manufacturing. This study investigates the change in the mechanical characteristics of a SUS316L specimen fabricated using selective laser melting based on the energy density and bead overlap ratio. The SUS316L powder particles were spherical and 35 ㎛ in size. Single-bead and hexahedral shape deposition experiments were performed sequentially. A single bead experiment was performed to obtain the bead overlap ratios for different laser parameters utilizing laser power and scan speed as experimental parameters. A hexahedral shape deposition experiment was also performed to observe the difference in mechanical properties, such as the internal porosity, surface roughness, and hardness, based on the energy density and bead overlap ratio of the three-dimensional printed part. Laser power, scan speed, overlap ratio, and layer thickness were chosen as parameters for the hexahedral shape deposition experiment. Accordingly, the energy density applied for three-dimensional printing, and the experimental parameters were calculated, and the energy density and bead overlap ratio for fabricating parts with good properties have been suggested.

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.

Analysis of Contact Properties by Varying the Firing Condition of AgAl Electrode for n-type Crystalline Silicon Solar Cell (AgAl 전극 고온 소성 조건 가변에 따른 N-형 결정질 실리콘 태양전지의 접촉 특성 분석)

  • Oh, Dong-Hyun;Chung, Sung-Youn;Jeon, Min-Han;Kang, Ji-Woon;Shim, Gyeong-Bae;Park, Cheol-Min;Kim, Hyun-Hoo;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.461-465
    • /
    • 2016
  • n-type silicon shows the better tolerance towards metal impurities with a higher minority carrier lifetime compared to p-type silicon substrate. Due to better lifetime stability as compared to p-type during illumination made the photovoltaic community to switch toward n-type wafers for high efficiency silicon solar cells. We fabricated the front electrode of the n-type solar cell with AgAl paste. The electrodes characteristics of the AgAl paste depend on the contact junction depth that is closely related to the firing temperature. Metal contact depth with p+ emitter, with optimized depth is important as it influence the resistance. In this study, we optimize the firing condition for the effective formation of the metal depth by varying the firing condition. The firing was carried out at temperatures below $670^{\circ}C$ with low contact depth and high contact resistance. It was noted that the contact resistance was reduced with the increase of firing temperature. The contact resistance of $5.99m{\Omega}cm^2$ was shown for the optimum firing temperature of $865^{\circ}C$. Over $900^{\circ}C$, contact junction is bonded to the Si through the emitter, resulting the contact resistance to shunt. we obtained photovoltaic parameter such as fill factor of 76.68%, short-circuit current of $40.2mA/cm^2$, open-circuit voltage of 620 mV and convert efficiency of 19.11%.

Development of Analytical Method of Organophosphates in Sea water by Finger Printing Fluorescence Spectroscopy (형광분석을 이용한 지문방식의 해수중 유기인의 분석 방법)

  • PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.377-387
    • /
    • 1997
  • Primary fluorescence characteristics of ten standard solutions of organophosphates, sea water, and water from agricultural land were investigated by fluorescence contour. All the standard solutions of organophosphates has shown characteristics countours. Their emission maxima were shown between 296 nm and 437 nm. According to their numbers of emission maxima on the fluorescence contours, the organophosphates can be categorized in two different groups. Ateric and Diazinon are the first group with two emission maxima. DDVP with other seven standard organophosphates belong to the second group. The second group has two subgroups. One is characterized by the similar emission and excitation maxima, which are 310 nm and 280 nm, respectively. Those are DDVP, Hinosan, Kitazin, Locsion, Meta. The other sub-group shows quite different emission and excitation maxima from the first sub-group. They are Monopho, Thaconyl and Gropho and their emisson maxima were in far longer (437 nm) or shorter wavelength (296 nm). From agricutural samples, one of the investigated organophosphates was detetected by its characteristic retention time $(t_r=12min)$. HPIC-fluorescence data gave an additional parameter for differentiation between two organophosphates which has similar excitation and emission maxima.

  • PDF