• Title/Summary/Keyword: Printing Width

Search Result 158, Processing Time 0.025 seconds

Preparation and Characterization of Heating Element for Inkjet Printer (잉크젯 프린터용 발열체의 제작과 특성연구)

  • 장호정;노영규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • The crystallized stable cobalt silicide$(CoSi_2)$ films were prepared on $poly-Si/SiO_2/Si$substrates for the application of inkjet printing head as a heating element with omega shape. The structural images and temperature resistance coefficient were investigated. The value of temperature resistance coefficient of the heating element was found to be about $0.0014/^{\circ}C$. The maximum power of the heating element was 2 W at the applied voltage of 2 V, 10 kHz in frequency and $1{\mu}s$ in pulse width. From the investigation of fatigue property according to the repeated applied voltages, there was no drastic changes in the resistances of heating element under the condition of $10^8$ pulsed cycles at below 15 V biased voltage. In contrast, the resistance of heating element was greatly increased at $10^6$ pulsed cycles when the heating element was operated at 17 V.

  • PDF

Improving Conductivity of Metal Grids by Controlling Sintering Process (배선 함몰 전극의 배선 소결공정 최적화에 따른 전기적 특성 향상)

  • Ahn, Wonmin;Jung, Sunghoon;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.158-162
    • /
    • 2015
  • To substitute indium tin oxide (ITO), many substituents have been studied such as metal nanowires, carbon based materials, 2D materials, and conducting polymers. These materials are not good enough to apply to an electrode because theses exhibit relatively high resistance. So metal grids are required as an additionalelectrode to improve the conductivities of substituents. The metal grids were printed by electrohydrodynamic printing system using Ag nanoparticle based ink. The Ag grids showed high uniformity and the line width was about $10{\mu}m$. The Ag nanoparticles are surrounded by dispersants such as unimolecular and polymer to prevent aggregation between Ag nanoparticles. The dispersants lead to low conductivity of Ag grids. Thus, the sintering process of Ag nanoparticles is strongly recommended to remove dispersants and connect each nanoparticles. For sintering process, the interface and microstructure of the Ag grid were controlled in 1.0 torr Ar atmosphere at aound $400^{\circ}C$ of temperature. From the sintering process, the uniformity of the Ag grid was improved and the defects on the Ag grids were reduced. As a result, the resistivity of Ag grid was greatly reduced up to $5.03({\pm}0.10){\times}10^{-6}{\Omega}{\cdot}cm$. The metal grids embedded substrates containing low pressure Ar sintered Ag grids showed 90.4% of transmittance in visible range with $0.43{\Omega}/{\square}$ of sheet resistance.

A Patterning Process for Organic Thin Films Using Discharge and Suction Needles (토출 및 흡입 Needle을 이용한 유기 박막 패터닝 공정)

  • Kim, Daeyeob;Shin, Dongkyun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • Unlike a printing process, it is difficult to pattern organic thin films in the longitudinal (coating) direction using a coating process. In this paper, we have investigated the feasibility of patterning organic thin films using needles. To this end, we have slot-coated an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution in the form of a fine stripe or large area and then applied the dual needle; one for discharging the main solvent of the underlying thin film and the other for sucking the dissolved thin film. We have found that the pattern width and depth increase as the moving speed of the plate decreases. However, it is observed that the sidewall slope is very gentle (the length of the slope is of the order of 200 ㎛) due to the fact that the discharged main solvent is widely spread and then isotropic etching occurs. With this scheme, we have also demonstrated that a fine stripe can be obtained by scanning the dual needle closely. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the patterned PEDOT:PSS stripe and observed the insulation property in the strong light-emitting stripe.

Tape-Type Liquid Leakage Film Sensor (액체누설 감지용 테이프형 필름센서)

  • Yu, D.K.;Kim, K.S.;Yub, H.K.;Han, G.H.;Jin, D.J.;Kim, J.H.;Han, S.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • The adhesive-tape of a liquid leak film sensor including the alarm system is developed. The sensing film is composed of three layers such as base film layer, conductive line layer, and protection film layer. The thickness of film is 300~500 um, the width is 3.55 cm, and the unit length is 200 m. On the conductive line layer, three conducting lines and one resistive line are formulated by the electronic printing method with a conducting ink of silver-nano size. When a liquid leaks for the electricity to be conducted between the conductive line and the resistive line, the position of leakage is monitored by measuring the voltage varied according to the change of resistance between two lines. The error range of sensing position of 200 m film sensor is ${\pm}1m$.

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles (이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구)

  • Seok-Won Yoon;Young-Eun Cho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • Purpose. With the advancement of digital technology, 3D printing is being utilized in the fabrication of denture base. Nevertheless, increasing microbial adhesion to the surface of denture base has been reported as the disadvantage of 3D-printed denture base. The purpose of this study is to investigate the antifungal properties and flexural strength of 3D-printed denture base resin according to the different contents of titanium dioxide nanoparticles. Materials and methods. Titanium dioxide nanoparticles were mixed with the 3D printing resin at the ratios of 0.5, 1, 1.5, and 2 wt%. Twenty specimens per each group were printed in the form of cylindrical shape (diameter: 20 mm, height: 3 mm) to evaluate antifungal properties. Ten specimens from each group underwent polishing using autogrinder, while the remaining ten specimens did not. Candida albicans in hyphae form was inoculated onto each specimen, optical density and colony-forming unit were analyzed. The surface of the specimen was observed using scanning electron microscopy. To evaluate the flexural strength, twenty specimens per each group were 3D printed in the form of rectangular prism shape (length: 64 mm, height: 10 mm, width: 3 mm) and three-point bending tests were conducted using universal testing machine according to ISO 20795-1. Results. Colony-forming unit of C.albicans and optical density of culture medium showed no difference between non-polished groups, but decreased in the polished groups at concentration of 1, 1.5, 2 wt% titanium dioxide nanoparticles. Flexural strength increased with titanium dioxide nanoparticle at concentration of 0.5, 1, 1.5 wt%, but decreased at 2 wt% compared to 1.5 wt%. Conclusion. When 1.5 wt% of titanium dioxide nanoparticles were added to the 3D-printed denture base resin with polishing, antifungal properties were increased.

Preparation and Application of DTP printable UV curable Ink for Leather (DTP용 자외선 경화형 잉크의 제조와 피혁에의 응용)

  • Park, Soo-Min;Hao, Fei;Lee, Sang-Heon;Lee, Sang-Chul;Kim, Hea-In
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.54-54
    • /
    • 2012
  • 전통 날염방식(Silk Screen)과 디지털날염(Digital Textile Printing)을 비교해보면, 디지털날염은 디자인에서부터 날염까지의 전공정을 완전히 디지털화함으로서 다양하게 디자인할 수 있고 미묘한 색감의 흐름을 표현할 수 있어서 자연스러운 이미지의 표현이 가능하다. 그러나 현재 디지털날염을 피혁이나 직물에 적용하기에는 프린팅속도가 느려서 생산성이 낮고 이미지 내구성(세탁, 승화, 일광, 및 마찰견뢰도)이 낮은 등 많은 단점을 가지고 있다. 또한 신발산업은 현재 중국이나 동남아시아 등 개발도상국의 등장으로 수출의 국제적 경쟁시대에 접어들면서 대량생산이나 획일적인 디자인으로부터 벗어나 고부가가치 상품을 생산해야하는 과제를 안게 되었다. 한편 가죽에 응용가능한 잉크는 크게 수성, 유성, 용제형과 자외선 경화형의 잉크가 있으며 자외선 경화형 잉크는 자외선을 이용하여 기존의 잉크의 단점을 보완한 것이다. 자외선 경화형 잉크는 자외선 램프를 열원으로 하여 이온 또는 라디칼 중합, 광중합을 하며, 에너지 소비가 적어 경제적이며 시스템 가동시 비활성 기체가 필요하지 않다. 또한 자외선 경화형 기술은 상온에서 이용할 수 있으며 잉크의 경우 건조하는 데 걸리는 시간이 필요하지 않다. 또한 시스템을 가동 시키거나 중지 시키는 것이 쉬우며 고속으로 연속적인 일을 처리할 수 있다. 프린터의 크기가 작아 공간 효율이 유리하며 용제나 $CO_2$가 발생하지 않아 친환경적인 기술이라 할 수 있다. 따라서 본 연구에서는 자외선 경화형 시스템을 잉크에 적용하여 피혁 표면에 프린팅한 다음 그 견뢰도를 측정함으로써 그 효과를 알아보았다. 세탁에 의한 Matlab 측정값으로부터 용제형 잉크의 경우는 세탁 전, 후 line width가 큰 차이를 보이나 자외선 경화형 잉크의 경우는 그 차이가 적음으로부터 자외선 경화형 잉크가 용제형에 비해 색상 탈리가 적었음을 말한다. 또한 raggedness값 역시 마찬가지 결과를 보여 안료 색소와 피혁의 접착성이 향상된 것을 알 수 있다. SEM을 이용한 피혁의 표면과 단면 사진을 보면 용제형보다 자외선 경화형 잉크를 사용한 피혁이 좀 더 매끈한 표면을 보이는데 이것은 접착기능을 하는 아크릴레이트에 의해 균일한 날염이 가능하기 때문이라 고 생각된다. 이상의 결과로부터 자외선 경화형 잉크가 세탁, 마찰, 일광 견뢰도가 우수함을 알 수 있었으며 기존의 용제형 잉크를 대체할 수 있는 좋은 재료라고 생각된다.

  • PDF