• 제목/요약/키워드: Printing, Three-dimensional

검색결과 271건 처리시간 0.026초

디지털 3차원 실물복제기 시스템 및 공정기술 개발 (Development of Digital 3D Real Object Duplication System and Process Technology)

  • 김동수;안영진;이원희;최병호;장민호;백영종;최경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.732-737
    • /
    • 2005
  • Distal 3D Real Object Duplication System(RODS) consists of 3D Scanner and Solid Freeform Fabrication System(SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and a industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer(SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. Also, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Multi-Laser Sintering(SMLS) process and 3-axis dynamic Focusing Scanner for scanning large area instead of the existing $f\theta$ lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, scan spacing. Now, this study is in progress to eveluate the effect of experimental parameters on the sintering process.

  • PDF

Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

  • Liang, Shuran;Xie, Xianju;Wang, Fan;Chang, Qiao;Wang, Hongmei;Bai, Yuxing
    • 대한치과교정학회지
    • /
    • 제50권5호
    • /
    • pp.346-355
    • /
    • 2020
  • The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized mini-plates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400-500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

회전각도를 이용한 알부민 농도 측정용 3차원 종이 칩 (Angular-based Measurement for Quantitative assay of Albumin in three-dimensional Paper-based analytical Device)

  • 김동호;정성근;이창수
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.286-292
    • /
    • 2020
  • 본 연구에서는 별도의 이미지 분석 장비를 사용하지 않고 정량적으로 알부민의 농도를 측정할 수 있는 회전각도를 이용한 3차원 종이 칩(3D-PADs)를 제시한다. 변색된 구간의 회전각도를 측정하는 간단한 방법으로 검출을 시연하였다. 3D-PADs는 왁스 프린터를 이용한 인쇄와 라미네이팅 과정을 거쳐 빠르게 제작할 수 있다. 3D-PADs는 샘플의 알부민을 검출하기 위하여 citrate buffer와 tetrabromophenol blue를 흡수시켰다. 3D-PAD의 흡수패드에 샘플 용액을 흡수시키면, 샘플 용액은 형성된 유로를 통하여 수직 및 수평 흐름을 통해 분석 구간으로 흐른다. 변색된 구간의 회전각도는 특정한 알부민의 농도를 나타내며, 알부민 측정의 신뢰할 수 있는 값임을 확인할 수 있었다.

Clinical outcomes of a low-cost single-channel myoelectric-interface three-dimensional hand prosthesis

  • Ku, Inhoe;Lee, Gordon K.;Park, Chan Yong;Lee, Janghyuk;Jeong, Euicheol
    • Archives of Plastic Surgery
    • /
    • 제46권4호
    • /
    • pp.303-310
    • /
    • 2019
  • Background Prosthetic hands with a myoelectric interface have recently received interest within the broader category of hand prostheses, but their high cost is a major barrier to use. Modern three-dimensional (3D) printing technology has enabled more widespread development and cost-effectiveness in the field of prostheses. The objective of the present study was to evaluate the clinical impact of a low-cost 3D-printed myoelectric-interface prosthetic hand on patients' daily life. Methods A prospective review of all upper-arm transradial amputation amputees who used 3D-printed myoelectric interface prostheses (Mark V) between January 2016 and August 2017 was conducted. The functional outcomes of prosthesis usage over a 3-month follow-up period were measured using a validated method (Orthotics Prosthetics User Survey-Upper Extremity Functional Status [OPUS-UEFS]). In addition, the correlation between the length of the amputated radius and changes in OPUS-UEFS scores was analyzed. Results Ten patients were included in the study. After use of the 3D-printed myoelectric single electromyography channel prosthesis for 3 months, the average OPUS-UEFS score significantly increased from 45.50 to 60.10. The Spearman correlation coefficient (r) of the correlation between radius length and OPUS-UEFS at the 3rd month of prosthetic use was 0.815. Conclusions This low-cost 3D-printed myoelectric-interface prosthetic hand with a single reliable myoelectrical signal shows the potential to positively impact amputees' quality of life through daily usage. The emergence of a low-cost 3D-printed myoelectric prosthesis could lead to new market trends, with such a device gaining popularity via reduced production costs and increased market demand.

선택적 레이저 용융 공정으로 제작된 시편의 SUS316L 에너지밀도 및 비드 중첩률에 따른 기계적 특성 변화 분석 (Impact of Energy Density and Bead Overlap Ratio of a SUS316L Specimen Fabricated using Selective Laser Melting on Mechanical Characteristics)

  • 이동욱;김우성;성지현;김철;이호진
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.42-51
    • /
    • 2021
  • Investigations of process parameters are essential when fabricating high-quality parts using additive manufacturing. This study investigates the change in the mechanical characteristics of a SUS316L specimen fabricated using selective laser melting based on the energy density and bead overlap ratio. The SUS316L powder particles were spherical and 35 ㎛ in size. Single-bead and hexahedral shape deposition experiments were performed sequentially. A single bead experiment was performed to obtain the bead overlap ratios for different laser parameters utilizing laser power and scan speed as experimental parameters. A hexahedral shape deposition experiment was also performed to observe the difference in mechanical properties, such as the internal porosity, surface roughness, and hardness, based on the energy density and bead overlap ratio of the three-dimensional printed part. Laser power, scan speed, overlap ratio, and layer thickness were chosen as parameters for the hexahedral shape deposition experiment. Accordingly, the energy density applied for three-dimensional printing, and the experimental parameters were calculated, and the energy density and bead overlap ratio for fabricating parts with good properties have been suggested.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

DLP 프린터로 제작한 상악 및 하악 의치상의 항온수조 침적에 따른 진실도(trueness) 평가 (Evaluation of trueness of maxillary and mandibular denture bases produced with a DLP printer by immersion in a constant temperature water bath)

  • 김동연;이광영
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.28-35
    • /
    • 2024
  • Purpose: To evaluate the three-dimensional trueness of upper and lower denture bases produced using a digital light processing (DLP) printer and immersed in a constant-temperature water bath. Methods: An edentulous model was prepared and fitted with denture bases and occlusal rims manufactured using base plate wax. After scanning the model, denture bases, and occlusal rims, complete denture designs were created. Using the designs and a DLP printer, 10 upper and 10 lower complete dentures were manufactured. Each denture was scanned before (impression surface of upper denture base before constant temperature water bath [UBC] and impression surface of lower denture base before constant temperature water bath [LBC] groups) and after (impression surface of upper denture base after constant temperature water bath [UAC] and impression surface of lower denture base after constant temperature water bath [LAC] groups) immersion in the constant-temperature water bath. Scanned files were analyzed by comparing reference and scanned data, with statistical analysis conducted using the Kruskal-Wallis test (α=0.05). Results: Statistical analysis revealed no significant differences between the UBC and LBC groups, nor between the UAC and LAC groups (p>0.05). However, significant differences were observed between the UBC and UAC groups and between the LBC and LAC groups, i.e., before and after the constant-temperature water bath for both maxillary and mandibular denture bases (p<0.05). Conclusion: Denture bases not immersed in the constant-temperature water bath (UBC and LBC groups) exhibited error values within 100 ㎛, whereas those immersed in the water bath (UAC and LAC groups) showed error values exceeding 100 ㎛.

무료공개 3D모델링 소프트웨어 사용자 경험 분석을 통한 교육용 3D모델링 소프트웨어 개발유형 제안 (A Proposal of Educational 3D Modelling Software Development Type Via User Experience Analysis of Open Source 3D Modelling Software)

  • 이국희;조재경
    • 감성과학
    • /
    • 제20권2호
    • /
    • pp.87-102
    • /
    • 2017
  • 3D프린팅에 대한 관심이 증가함에 따라, 3D프린팅에 선행되어야 할 3D모델링 교육에 대한 관심으로 증가하고 있다. 그러나 현존하는 3D모델링 소프트웨어들은 대부분 외국 브랜드에서 개발하였고, 이에 따라 인터페이스가 모두 영어되어 있기에 이러한 용어에 익숙하지 않은 한국인 입문자들을 대상으로 3D모델링 소프트웨어 교육을 수행하기에는 제약이 있다. 본 연구는 이러한 현실을 반영하면서 3D프린팅을 위한 한국형 3D모델링 교육용 소프트웨어를 개발할 때 고려해야할 사항이 무엇인지 탐색하기 위해 이루어졌다. 이를 위해 3D모델링 경험이 없는 사람들로 하여금 입문자들의 접근이 용이하다고 알려진 대표적인 무료공개 3D모델링 소프트웨어 123D Design나 Tinker CAD 중 하나로 집만들기 과제를 수행하게 한 후, 이에 대한 설문을 진행하였다. 결과적으로 Tinker CAD에 대한 사용자 경험이 123D Design에 대한 것보다 호의적이고, 전자를 경험하면서 발생한 오류가 후자를 경험하면서 발생한 오류보다 적으며, 전자에서 과업을 완료한 사람의 비율이 후자에서 과업을 완료한 사람의 비율보다 높음을 확인할 수 있었다. 종합논의에서는 Tinker CAD의 특성(입체도형을 통해 쉽게 모델링 가능)과 웹 기반 구동방식을 적용한 입문자 교육용 3D모델링 소프트웨어 개발 및 123D Design의 특성(세밀한 치수조작과 도형정렬 가능)과 윈도우 기반 구동방식을 적용한 초?중급자 교육용 3D모델링 소프트웨어 개발을 제안하였다.

편측성 안면 신경마비 환자에서 3D printing gothic arch tracer와 POP bow system을 이용한 전악 임플란트 고정성 보철 수복 (Full mouth rehabilitation with implant fixed prostheses using POP bow system and 3D printing gothic arch tracer in a patient with unilateral facial nerve palsy)

  • 정성윤;정창모;윤미정;허중보;이소현
    • 대한치과보철학회지
    • /
    • 제62권3호
    • /
    • pp.201-214
    • /
    • 2024
  • 불안정한 하악운동을 하는 환자가 불수의적인 안면근육의 움직임과 안모의 비대칭적 변화를 동반하는 경우 교합수직고경의 결정과 중심위 기록, 그리고 교합평면의 정보 전달에 많은 어려움을 겪게 된다. 본 증례에서는 편측성 안면 신경마비의 증상을 갖고 오랜 기간 무치악 상태였던 환자를 위해, 3D 프린팅 방식으로 제작된 개인맞춤형의 고딕아치 묘기장치와 조립식의 교합평면 인기장치인 POP bow system을 이용하여 CAD-CAM 임시보철물을 제작하고 안정적인 악간관계를 도모하였다. 이후, 적절한 교합수직고경과 재현성 있는 중심위 및 올바른 3차원적 교합평면의 전달을 통해 전악 임플란트 고정성 보철물을 제작하고, 지속적인 유지관리를 시행하여 환자에게 기능적이고 심미적인 구강건강을 회복해 주었기에 이를 보고하는 바이다.

3D 프린팅 기술을 활용한 낙상충격 보호패드 설계 및 구조에 따른 특성비교 (Design of Fall Impact Protection Pads Using 3D Printing Technology and Comparison of Characteristics according to Structure)

  • 박정현;정희경;이정란
    • 한국의류학회지
    • /
    • 제42권4호
    • /
    • pp.612-625
    • /
    • 2018
  • This study designed 16 kinds of basic structure and 4 kinds of modified structure for impact protection pads with a spacer fabric shape. The pad is a structure in which hexagonal three-dimensional units, composed of a surface layer and a spacer layer, are interconnected. Designed pads were printed with flexible $NinjaFlex^{(R)}$ materials using a FDM 3D printer. The printed pads were evaluated for impact protection performance, compression properties and sensory properties. The evaluation of the impact protection performance indicated that basic structures better than CR foam material at 20cm height were DV1.5, DX1.5, DX1.0, DV1.0 and HV1.5. The evaluation of the compression properties for the five types, with good results in the impact protection performance, indicated that DV1.0, DX1.0, DV1.5, HV1.5 and DX1.5 showed good results, respectively. The sensory evaluation of DV1.0, DX1.0, and DV1.5, which with good results when considering both the impact protection performance and the compression performance, showed that DV1.0 were the best for surface, flexibility, compression and weight. Therefore, DV1.0 is shown to be the best structure for protection pads.