• Title/Summary/Keyword: Printing, Three-Dimensional

Search Result 275, Processing Time 0.021 seconds

3D Printing Characteristics of Reverse Idle Gears for Tractor Transmissions (트랙터 트랜스미션용 후진 아이들 기어의 3D 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This paper concerns the possibility of 3D printing reverse idle gears for tractor transmission. For the purposes of this experiment, idle gears were manufactured using a SLA 3D printer, FDM 3D printer, and through machining. The accuracy of the idle gears produced in these three different ways were evaluated by the properties of their outer diameter, inner diameter, roundness, concentricity, parallelism, span, backlash, and gear grade. The tooth characteristics of the idle gears were evaluated by their profile, lead, and the pitch of the gears. The results of this experiment determined that the surface conditions created by the finishing process had a significant impact on the dimensional accuracy of the gears and the characteristics of their teeth.

Performance Analysis of an Industrial Inkjet Printing Head Using the 1D Lumped Model

  • Sim, Won-Chul;Park, Sung-Jun;Joung, Jae-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.50-53
    • /
    • 2008
  • A design approach using a one-dimensional (1D) lumped model was studied and applied to an industrial inkjet printing head design for micro patterning on printed circuit boards. For an accurate analysis, a three-dimensional piezoelectric-driven actuator model was analyzed and its jetting characteristics were applied to 1Danalysis model. The performance of the 1D lumped model was verified by comparing measured and simulated results. The developed 1D model helped to optimize the design and configuration of the inkjet head and could be implemented in the design of multi-nozzle inkjet printing heads to improve the jetting frequency and minimize crosstalk.

Polymer Inkjet Printing: Construction of Three-Dimensional Structures at Micro-Scale by Repeated Lamination

  • Yun, Yeon-Hee;Kim, Jae-Dong;Lee, Byung-Kook;Cho, Yong-Woo;Lee, Hee-Young
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2009
  • Solution-based, direct-write patterning by an automated, computer-controlled, inkjet technique is of particular interest in a wide variety of industrial fields. We report the construction of three-dimensional (3D), micro-patterned structures by polymer inkjet printing. A piezoelectric, drop-on-demand (DOD) inkjet printing system and a common polymer, PVA (poly(vinyl alcohol)), were explored for 3D construction. After a systematic preliminary study with different solvent systems, a mixture of water and DMSO was chosen as an appropriate solvent for PVA inks. The use of water as a single solvent resulted in frequent PVA clogging when the nozzles were undisturbed. Among the tested polymer ink compositions, the PVA inks in a water/DMSO mixture (4/1 v/v) with concentrations of 3 to 5 g/dL proved to be appropriate for piezoelectric DOD inkjet printing because they were well within the proper viscosity and surface tension range. When a dot was printed, the so-called 'coffee-ring effect' was significant, but its appearance was not prominent in line printing. The optimal polymer inkjet printing process was repeated slice after slice up to 200 times, which produced a well-defined, 3 D micro-patterned surface. The overall results implied that piezoelectric DOD polymer inkjet printing could be a powerful, solid-freeform, fabrication technology to create a controlled 3D architecture.

A Study on the Development of SFF System based on 3DP Process (3차원 프린팅(3DP) 공정을 기반으로 한 임의형상제작(SFF) 시스템 개발에 관한 연구)

  • Lee Won-Hee;Kim Jung-Su;Lee Min-Cheol;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.168-176
    • /
    • 2006
  • Nowadays, Three dimensional printing (3DP) technique that is one of solid freeform fabrication (SFF) technology has been notable issue, and has been applied by various fields. The SFF system can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. In this research, a SFF system to analyze 3DP process technology is developed. We applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm and minimized position error to the developed SFF system. We analyzed and optimized process variables such as jetted volume, layer thickness, powder bed and so on experimentally. Also. the dimensional error of a developed SFF system is evaluated. Finally, the feasibility of application to bio manufacturing is presented through successful fabrication of teeth and cranium model.

Study of Chemical Post-processing Method for Fused Deposition Modeled Three-Dimensional Printing Materials (FDM 방식 3D 프린팅 출력물의 화학적 후처리 공정 연구)

  • Kim, Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.839-844
    • /
    • 2017
  • In the past few years, three-dimensional (3D) printing has been developed as a rapid prototyping (RP) technique. The fused deposition modeling (FDM)-type 3D printing is one of the most useful RP methods; however, it still has several disadvantages, such as low conductivity, heat degradation, and low surface quality. In this study, test specimens are fabricated using an FDM-type 3D printer with an ABS material. Then, the specimens undergo post-processing on submerging in acetone with various processing times. As the processing time increases, surface roughness is enhanced significantly within the first five seconds by chemical processing, following which the processing effects are reduced. Furthermore, post processing causes the ultimate strength and strain to increase slightly with increased processing time.

Dimensional Characteristics according to Internal Density of Automotive Inner Ring in 3D Printing (3D 프린팅에서 자동차용 Inner ring의 내부밀도에 따른 치수 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.96-102
    • /
    • 2019
  • Reverse engineering involves duplicating a physical part by measuring and analyzing its physical dimensions, features, and material properties. By combining reverse engineering with three-dimensional (3D) printing, engineers can simply fabricate and evaluate functional prototypes. This design methodology has been attracting increasing interest with the advent of the Fourth Industrial Revolution. In the present study, we apply reverse engineering and 3D printing technologies to evaluate a fabricated automotive inner ring prototype. Through 3D printing, inner rings of various densities were prepared. Their physical dimensions were measured with a 3D scanning system. Of our interest was the effect of inner ring density on the physical dimensions of the fabricated prototype. We compared the design dimensions and physical dimensions of the fabricated prototypes. The results revealed that even the 20% density of inner ring was effective for 3D printing in terms of satisfying the design requirements.

3D printing of Ceramics: Introduction and the Feasibility in Dentistry (세라믹 3D 프린팅 소개와 치과분야에서의 활용가능성)

  • Oh, Seunghan
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.448-459
    • /
    • 2020
  • In addition to extensive research on polymer and metal three-dimensional (3D) printing, ceramic 3D printing has recently been highlighted in various fields. The biggest advantage of 3D printing has the ability to easily create any complex shape. This review introduces the 3D printing technology of ceramics according to the type of material and deals with the latest related research in the industrial field including the biomedical engineering field. Finally, the future of ceramic 3D printing technology available in dentistry will be discussed.

  • PDF

Successful Examples of 3D Printing Technology-based Start-up Enterprises (3D 프린팅 기술 기반 창업 성공 사례)

  • Shim, Jin-Hyung;Yun, Won Soo;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.104-110
    • /
    • 2016
  • The process of three-dimensional (3D) printing (also known as "rapid prototyping" and "additive manufacturing") uses computer-created digital models to produce 3D objects with a desired shape by stacking materials through a layer-by-layer process. The industrial potential and feasibility of 3D printing technology were recently highlighted in President Obama's State of the Union address in 2013. Since his speech, worldwide investment in and attention toward 3D printing technology have increased explosively. In addition, a number of 3D printing technology-based start-up companies have been established and evaluated as emerging enterprises making successful business models. In this paper, successful start-up companies (domestic and overseas) based on 3D printing technology will be reviewed.

Formulation and ink-jet 3D printability of photo curable nano silica ink (광경화 나노 실리카 잉크의 합성 및 잉크젯 프린팅 적층 특성평가)

  • Lee, Jae-Young;Lee, Ji-Hyeon;Park, Jae-Hyeon;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.345-351
    • /
    • 2019
  • Recently, ink-jet printing technology has been applied for various industries such as semiconductor, display, ceramic tile decoration. Ink-jet printing has advantages of high resolution patterning, fast printing speed, high ink efficiency and many attempts have been made to apply functional materials with excellent physical and chemical properties for the ink-jet printing process. Due to these advantages, research scope of ink-jet printing is expanding from conventional two-dimensional printing to three-dimensional printing. In order to expand the application of ink-jet printing, it is necessary to optimize the rheological properties of the ink and the interaction with the substrate. In this study, photo curable ceramic complex ink containing nano silica particles were synthesized and its printability was characterized. Contact angle of the photo curable silica ink were modified by control of the ink composition and the surface property of the substrate. Effects of contact angle on printing resolution and three-dimensional printability were investigated in detail.

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF