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ABSTRACT

Reverse engineering involves duplicating a physical part by measuring and analyzing its physical dimensions,
features, and material properties. By combining reverse engineering with three-dimensional (3D) printing,
engineers can simply fabricate and evaluate functional prototypes. This design methodology has been attracting
increasing interest with the advent of the Fourth Industrial Revolution. In the present study, we apply reverse
engineering and 3D printing technologies to evaluate a fabricated automotive inner ring prototype. Through 3D
printing, inner rings of various densities were prepared. Their physical dimensions were measured with a 3D
scanning system. Of our interest was the effect of inner ring density on the physical dimensions of the
fabricated prototype. We compared the design dimensions and physical dimensions of the fabricated prototypes.
The results revealed that even the 20% density of inner ring was effective for 3D printing in terms of satisfying
the design requirements.

Key Words : Automotive Inner Ring(AFSA} LIE), 3D Printing Density3D ZZE ZT), Dimension Characteristics(X |5 &
4), FDM Method 3D Printer(FDM 2+ 3D ZZ2IE])
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2. XASXI-E Inner ring2| 3D ZEIE

2.1 3D ZEIE HAF |

A5 2} Inner ring ¥-%9] 3D ZUE-S FDM 4] 9]
Ultimaker S5 ZHE & A3 THFig. 1). BHANEE
Ultimaker PLA(Z 7 2.85mm, 24)S ALg3t4 o,
A ZE]E PLARZE 2.85mm, 24)S AR83te] st
3B BES ZAUYSIY T 3D ZHE 21 A3}
7] 93l Ultimaker S5 ZTHE Q] HEAZE o]l
CURAE A8-319 ). Table 19141& A5 Inner ring
H3Zol 3D ZTUE 2AS YeRfa gl

Fig. 1 Ultimaker S5 3D printer

Table 1 3D Printing condition

Material PLA PLA
(Body) (Support)
Print core AA 04 AA 04
Layer height(mm) 0.1 0.1
Wall thickness(mm) 1.2 1
Top thickness(mm) 1.2 1
Bottom thickness(mm) 1.2 1
Infill density(%) 208’0?01’080’ 70
Infill pattern Triangles Triangles
Printing temperature(C) 200 215
Build plate temperature(C) 60 60
Print speed(mm/s) 70 35
Material consumption(g) 136 36

2.2 Inner ring®| 3D Z2E A[Z2o[M
B =FNA= A5A} Inner ring F-3F2] 3D ZHE
Zell Ultimaker S5 ZHE 9] HEAZESo]l CURA
AZEJ o] E AR WELE 20%, 40%, 60%,
80%, 100% ol T3t YIRFHEA, AHE &2
ZF 9 AFATEE A 2F3EATE CURA A2 ES)of
oA UIF Al Fel= A4 845 Agsia da,
AdE YR = wet AE e 2r)s Ao
7‘@35 w2 o]t}, Fig, 20| Al Inner ring®] 3D =&
< 913l CURA &ZEg|ojol|x] EeEll 34 et
1411 AL, W s 83| B3k 8l 1/40] T
2 a8 28319 t) Fg 3904 Iner ring®) 3D ZUH
< 3l CURA AZEgololl A DX 20%, 40%, 60%,
80%, 100% 5= A< we lHPr FFE el
AT} Table 2014 252} Inner ring §-%-2] R D =0
e ZYUY AN AR AR Ve

Ultimaker

I < i i
‘I\‘ .‘.\\“n&ﬂ

Fig. 2 CURA open model of inner ring parts

Ultimaker

Ultimaker

@ 20%‘ | () 40%

Ultimaker

(d) 80%
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Ultimaker

(€) 100%

Fig. 3 Intermal structure shape of inner ring

according to density

Table 2 Printing time and material consumption
according to density

Density(%) 20 40 60 80 100
Printing 1525 1704 1850 2031 3837
time(hour)
Material 77 % 112 133 154
consumption(g)

2.3 Y=o e Inner ring? 3D ZEE

Ultimaker S5 ZHE 2] HEALZE oSl CURA
AFZE O] E AR WELE 20%, 40%, 60%,
80%, 100% 522 243t 3D ZAE= Inner ring®
HF STL Y& A3tk Inner ring®] 3D ZHH -2
FDM 2] 9] Ultimaker S5 ZHE & AL-&3}4TH

Fig. 49| A 5-E] Fig. 874 = WHEEE 20%, 40%,
60%, 80%, 100% 522 73} 3D ZHRE Inner

g BE Udepfl o, 247 Wso) W WEAR
}6, 3D ZAE o] AXE A|A He] ¥4 = 3D
Uy $o] MEZE AA T Inner ring F4-S HER
ot.

32 |H oﬁL

(a) Internal grid geometry

(b) Before support removal (c) After support removal
Fig. 4 3D Printing of inner ring with 20% density

(b) Before support removal (c) After support removal
Fig. 5 3D Printing of inner ring with 40% density

(a) Internal grid geometry

(c) After support removal
Fig. 6 3D Printing of inner ring with 60% density

(b) Before support removal
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(a) Internal grid geometry

(b) Before support removal (c) After support removal
Fig. 7 3D Printing of inner ring with 80% density

(a) Internal grid geometry

(b) Before support removal (c) After support removal
Fig. 8 3D Printing of inner ring with 100% density

3. 2o wE Inner ring2| 3D ZEE

3.1 Inner ring®| AAH| 2o} AZH DHo| &Y
Inner ring F-%2] 27 =3} 3D T E Inner ring
B2 A BlaE 9l RedmondAHe] HIF So]53
o)A 27014 <l Artec Space Spider 3D ScannerE AR
3ted 3D TR Inner ring AL 23 A} 18]

Tnner ring®] A 23 27 mlo] A2 Geomagic
Control X &ZE o1& A3} T Fig. 9914 F-H
Fig. 137FA= Inner ring A 223 YELE 20%,
40%, 60%, 80%, 100% S o2 AAste] 3D ZHUE
ztzte]
g2 Inner ring =2

Inner ring®] AEE F/F& UehiAet. 18

O = A =g, 20 =4,

3} GAE To=e gehe oo

(a) Design model (b) Scan model

-1 0 1

(c) Alignment of design model and scan model

Fig. 9 Internal density 20%

(b) Scan model

-1 0 1

(c) Alignment of design model and scan model
Fig. 10 Internal density 40%

(a) Design model
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(b) Scan model

(a) Design model

1 0
(c) Alignment of design model and scan model
Fig. 11 Internal density 60%

(b) Scan model

1

-1 0
(c) Alignment of design model and scan model

Fig. 12 Internal density 80%

(b) Scan model

(a) Design model

-1 0
(c) Alignment of design model and scan model
Fig. 13 Internal density 100%

3.2 Inner ring®| 3D ZEIE X[ H|I

3.1°49] Inner ring®] AA 2R3 270 2o HF
AE S vl O E Inner ring?] =0 wE 3D
ZYUHE XFE vt A5 FAHE Geomagic
Control X &2 Ego]o] AL 7]5S AHE-3FG o1,
Inner ring®] X4+ =3 74 E Fig. 140014 BE vieh
Zo] AAAT A5 FAE £0.15mmE A 4 5}
HAALE AAEA.

Table 391 41= nner ring A7 2dl} YREUZ 20%,
40%, 60%, 80%, 100% 5% 3D ZEH hner ring®]
A &4 2345 el ok Aol B nlet
Zol, Za X9t nluste] AA SHE A FES
OF2 o= Yeton, 11 o]f= PLA W EL)
3D ZUE Ao == 7193 Ao 2 AT HT} i
Uso)] mE X5 vlmeE AdE He Wellie 2 2o
7F e Aoz it B A3S 53 Add uiE=
28 H9 HellAis AAE 349 A5E el U= 20%
A% 3D Z™HEo] 7Fsdhe RIS = Ut

@ @
083.00£0.15  074,650.15

3
095.97+0.15

®
51.20%0.15

\4/‘,/
083.07£0.15

o/

093.2340.15

Fig. 14 Dimension measurement point of inner ring
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Table 3 Dimension comparison result with design model
and 3D printing model
(a) Internal density 20%

Reference Measurement

No. Tolerance Deviation
value value
O +0.15 74.65 74.49 -0.16
@  +0.15 83 82.08 -0.93
®  +0.15 95.97 95.86 -0.11
@  +0.15 83.07 82.66 -0.41
®  +0.15 95.23 94.86 -0.37
®  +0.15 51.2 50.49 -0.71
(b) Internal density 40%
Reference Measurement o
No. Tolerance Deviation
value value
O +0.15 74.65 74.03 -0.62
@  +0.15 83 82.63 -0.37
®  +0.15 95.97 95.93 -0.04
@  +0.15 83.07 82.89 -0.18
®  +0.15 95.23 95.62 0.39
®  +0.15 51.2 50.19 -1.01
(c) Internal density 60%
Reference Measurement o
No. Tolerance Deviation
value value
O +0.15 74.65 73.93 -0.71
@  +0.15 83 82.36 -0.64
®  +0.15 95.97 96.23 0.26
@  +0.15 83.07 82.33 -0.73
®  +0.15 95.23 95.11 -0.12
®  +0.15 51.2 50.92 -0.28
(d) Internal density 80%
Reference Measurement o
No. Tolerance Deviation
value value
O +0.15 74.65 74.29 -0.36
@  +0.15 83 82.58 -0.42
®  +0.15 95.97 96.01 0.03
@  +0.15 83.07 82.7 -0.37
®  +0.15 95.23 95.34 0.11
®  +0.15 51.2 50.78 -0.42

(e) Internal density 100%

Reference Measurement

No. Tolerance Deviation
value value

O +0.15 74.65 73.75 -0.89
@  +0.15 83 82.32 -0.68
®  +0.15 95.97 95.68 -0.3

@  +0.15 83.07 82.44 -0.63
®  +0.15 95.23 95.36 0.13
®  +0.15 51.2 50.54 -0.66
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