• 제목/요약/키워드: Printer Design

검색결과 269건 처리시간 0.026초

초콜릿 소재의 3차원 프린터 개발에 관한 연구 (A Study on Development of Three-Dimensional Chocolate Printer)

  • 김규언;박근;이치범
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.293-298
    • /
    • 2017
  • In this study, we developed a 3D chocolate printer and studied the conditions needed for chocolate printing. Because chocolate is a mixture of cocoa mass, cocoa butter and sugar particles, its properties vary with temperature, and care is required in melting and extrusion. A chocolate supply unit is composed of a heating block and a syringe pump. It is integrated with a 3-axis linear robot. In order to be more accurate than the existing 3D chocolate printer is, the system was configured so that the printing line width became $430{\mu}m$. Printing performance was studied according to various parameters. The condition needed for printing lines with a stable width was discovered by the experimental design method and has been confirmed by a 2D line test. These 3D printing experiments showed that it was possible to build a 3D shape with an inclination angle of up to $45^{\circ}$ without support. Further, chocolate printing of a 3D shape has been successfully verified with the developed system.

Design and Manufacture of Robotic Exoskeleton Hands Using 3-D Printer

  • Choe, Jong-Hun;Jo, Seong-Hyeon;Seo, Suk-Hyun;Kim, Won-Hoe;Hyun, Ji-Eum;Lee, Hong-Kyu;Kim, Yun-Haek;Park, Se-Ho
    • 공학교육연구
    • /
    • 제17권4호
    • /
    • pp.3-6
    • /
    • 2014
  • Robotic exoskeletons are kind of wearable robots enabling operators to amplify the force. There are several possible applications in plenty of options: to put very heavy products into right positions for assemblies, to rescue people from natural disasters, and to work for medical rehabilitation etc. In this study, the exoskeleton hands were designed and fabricated using 3-D printer. It would be the good case of application of 3-D printer to design and fabricate the exoskeleton hands.

Development of a Large 3D printer for Manufacturing Form-Liner and Protective Skin of Concrete Structures

  • Jang, Jungsik;Hong, Kee-Jeung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.74-86
    • /
    • 2020
  • This study discussesresearch and development of large-sized 3D printers that can be applied to construction and civil engineering for various designs of protective casing on foam liner for concrete exteriors. The consistent use of concrete represents the current surroundings. However, concrete exteriors in Korea have not considered the regional characteristics, but the concrete has been poured solely for economical aspects for the last decade or two. There are many cases of poor installation and not enough design development projects to correct it. This study was conducted to apply various patterns, regional characteristics, and 3D printing for protective casing design for foam liner to create various designs for the concrete walls. Therefore, we started researching on a large 3D printer, and designed and developed this system. Considering the chronological process, the properties of concrete structures were identified, the application of designs for concrete in Korea and abroad and the 3D printing materials for the protective casing were surveyed and analyzed, and a stereotype was produced in the first year to study designs for the beauty of concrete surfaces. In the second year, images of regional characteristics were gathered, design ideas for regional promotion were derived, virtual images were produced along with design modeling to simulate the appearances, and verify the effect of application and promotion. Finally, in the third year, the 3D printer for concrete foam liner was constantly improved to analyze the 3D printing program and the various library elements to complete an actual large-sized 3D printer.

3D 프린터를 사용한 정밀 스테이지의 제작 (Fabrication of Piezo-Driven Micropositioning Stage using 3D printer)

  • 정호제;김정현
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.277-283
    • /
    • 2014
  • This paper presents the design, optimization and fabrication of a piezo driven micro-positioning stage constructed using a 3D-printer. 3D printing technology provides many advantageous aspects in comparison to traditional manufacturing techniques allowing more rapid prototyping freedom in design, etc. Micro-positioning stages have traditionally been made using metal materials namely aluminum. This paper investigates the possibility of fabricating stages using ABS material with a 3D printer. CAE simulations show that equivalent motion amplification can be achieved compared to a traditional aluminum fabricated stage while the maximum stress is 30 times less. This leads to the possibility of stages with higher magnification factors and less load on the driving piezo element. Experiment results agree with the simulation results. A micro-position stage was fabricated using a 3D printer with ABS material. The motion amplification is very linear and 50 nm stepping was demonstrated.

UHF 대역 무선 프린터 공유 인터페이스의 설계 (The Design of Wireless Printer Interfaces for UHF band)

  • 강영석;김기래
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.280-283
    • /
    • 2000
  • 여러 대의 컴퓨터를 사용하는 경우 프린터의 공유 방법에 관한 문제가 제기된다. LAN에 의한 프린터공유는 보편적이나, LAN이 설치되지 않은 환경에서는 프린터 공유기를 이용하거나 프린터를 이동시켜 인쇄를 하여야 한다. 본 연구에서는 컴퓨터와 프린터 사이에 무선으로 데이터를 송수신 한 수 있는 무선 인터페이스 프린터 공유기를 개발하였다. 이 장치를 이용함으로써 프린터의 이동 없이 최대 50미터 반경내의 다수의 컴퓨터와 시분할 방식의 공유가 가능하다. 본 장치는 프린터와 컴퓨터에 UHF 송수신 인터페이스 모듈을 각각 설치하여 데이터를 전송하며, 최대 전송속도는 9600bps이다.

  • PDF

ABS 수지로 3D Printing 시 실험변수들의 영향 (The Influence of Experiment Variables on 3D Printing using ABS Resin)

  • 강용구;이태원;신근식
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.94-101
    • /
    • 2017
  • Recently, the small quantity batch production method has come into the spotlight as there are more plastic processing methods. At the same time, the 3D printer market has become globally widespread due to expired 3D printer patents. In particular, the FDM method is widely used for cheap products and materials. However, the FDM scheme is not as good as the injection molding method for quality and strength. This study investigated the effect of the internal filling and strength according to layer thickness to search for the optimum printing of the factors (infill and layer thickness) that determine the strength of the model.

A Study on 3D Printer Design for Clothing Printing: Focusing on Knitted Wearable Clothing Output

  • Chung, Do-Seung;Kim, Kwan-Bae;Jang, Jung-Sik
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.82-89
    • /
    • 2020
  • This study is a design study related to the application of 3D printer technology for garment printing. Knitting, which used to be a home industry in the early days, originally comes from hand-knitting. This evolved with various personal devices as a small job for the self-sufficiency of early European housewives. In addition, since the Industrial Revolution, mechanical production entered the mass production mass supply system, and various apparel products were provided to consumers in accordance with mass standardized dimensions. This is similar to the development process in Korea. In addition, it has formed a considerable market with the situation that it can produce and supply apparel products at low labor costs of first-generation Namdaemun and Dongdaemun merchants. As the production shifted to the Southeast Asian region due to the increase in labor costs in the domestically developed social situation, the production of garment products in Korea is now almost 5%. As a result, apparel-related production facilities and related companies are constantly moving to other countries to move production facilities sensitively due to rising labor costs. Recently, smart factory automation has been planned to explore new possibilities. In addition, in recent years, with the evolved appearance of consumers, the appropriate supply of the right amount of production has appeared, and the 3D printer applied to personal garment output has attracted considerable interest in the customized market. Therefore, in order to become a new hope and a small addition to various clothing workers, this study conducted related research on the following 3D printers for clothing output and attempted to proceed with a new design.

3D 프린팅 노즐의 일체형 압출기 쿨링 시스템 개발 (Developing Integrated Compressor Cooler System of 3D Printing Nozzle)

  • 손지환;박현우;하동우;이창우;김진수;강성기
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.6-12
    • /
    • 2017
  • In a large 3D printer when the cooler, which cools the filament, acts in one direction, the area directly exposed to the cooling is cooled to the proper temperature. However, the cooling effect on the opposite area is relatively less. It was found in experiments that filaments with a thickness of over 2 mm exhibit the cooling problem in one directional cooling. Consequently, cooling was performed to prevent the flow-down and to produce firm support leading to an improvement in product quality in extrusion. Further, the lay-up of a 3D printer with five guides combined with a duct was achieved. Analysis showed that the improvement in the cooling effect enables stable extrusion and lay-up and thus, reduces fabrication time.

FDM 3D Printer의 층간 충진율에 따른 강도변화 (Strength Variation with Inter-Layer Fill Factor of FDM 3D Printer)

  • 강용구;권현규;신근식
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, FDM-type 3D printer technology has been developed, and efforts have been made to improve the output formability and characteristics further. Through this, 3D printers are used in various fields, and printer technologies are suggested according to usage, such as FDM, SLA, DLP, and SLM. In particular, the FDM method is the most widely used, and the FDM method technology is being developed further. The characteristics of the output are produced by the FDM-type 3D printer, which is determined by various factors, and particularly the perspective of the Inter-Layer Fill Factor, which is the volume ratio of the laminated material that exerts a direct influence. In this study, the Inter-Layer Fill Factor is theoretically obtained by presenting the internal space between each layer according to the laminate thickness as a cross-sectional shape model, and the cross section of the actual laminated sample is compared with the theoretical model through experiments. Then, the equation for the theoretical model is defined, and the strength change according to each condition (tensile strength of material, reduction slope, strength reduction rate, and output strength) is confirmed. In addition, we investigated the influence on the correlation and strength between laminate thickness and the Inter-Layer Fill Factor.