• Title/Summary/Keyword: Printed antenna

Search Result 207, Processing Time 0.028 seconds

Compact wideband printed antenna with band-rejection characteristic (대역 저지 특성을 갖는 소형 광대역 안테나)

  • Choi, Woo-Young;Seol, Kyung-Moon;Jung, Ji-Hak;Chung, Kyung-Ho;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.259-264
    • /
    • 2005
  • In this paper, a novel compact microstrip-fed antenna with band-rejection characteristic for wideband applications is proposed. By cutting an L-shaped notch on the radiation patch, the wideband property for the proposed antenna is achieved. In addition, a C-shaped slot is introduced to obtain the band rejection operation of the antenna. The antenna, with very small size of $15.5\times21 mm^2$ including the ground plane, operates over 3.08 to 10.97 GHz and has the rejection band of 5.03 to 5.91 GHz for $S_{11}$ < -10 dB.

  • PDF

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

  • Lee, Hyeonjin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1081-1085
    • /
    • 2015
  • In this paper a printed pair dipole antenna with double tapered microstrip balun for wireless communications is proposed. The proposed antenna consists of a pair arm of different sizes that is branched microstrip line and microstrip line with the ground plane on opposite side of the dielectric substrate plane. The proposed antenna is matched between the ground plane to the microstrip line by double tapered microstrip balun. This antenna obtains multi-band radiation frequency band. The impedance bandwidths for a reflection coefficient of VSWR ≤ 2 are about 1.01 GHz (2.35~3.336 GHz), 1.56 GHz (4.7~6.26 GHz) and 1.15GHz (6.85~8.0[GHz]). Additionally, the measurement peak gain is about 3.6 dBi. The proposed antenna is able to support wireless communication applications.

A Triple Band Deep-Tissue Antenna for Biomedical Implants (심부 조직 인체 삽입용 세 가지 밴드 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.383-386
    • /
    • 2017
  • In this study, we introduce a triple-band flexible implantable antenna that is tuned by using a ground slot in three specific bands, namely Medical Implanted Communication Service (MICS: 402-405 MHz) for telemetry, the midfield band (lower gigahertz: 1.45-1.6 GHz) for Wireless Power Transfer (WPT), and the Industrial, Scientific and Medical band (ISM: 2.4-2.45 GHz) for power conservation. This antenna is wrapped inside a printed 3D capsule prototype to show its applicability in different implantable or ingestible devices. The telemetry performance of the proposed antenna was simulated and measured by using a porcine heart. From the simulation and measurement, we found that use of a ground slot in the implantable antenna can improve the antenna performance and can also reduce the Specific Absorption Rate (SAR).

A Design of a circularly polarized small UHF RFID antenna (소형 원형편파 UHF RFID 대역 융합형 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.109-114
    • /
    • 2015
  • A circularly polarized small UHF RFID reader antenna is presented. The antenna is composed of four elements and printed on the plastic substrate(${\varepsilon}_r=2.2$, t=5mm). Each element is fed by a probe which is sequentially connected to the feed line. The feed line is manufactured on the FR-4 substrate(t=1.0mm, ${\varepsilon}_r=4.7$). The simulation results shows that the antenna can be achieved a return loss of 12dB, gain of 3.46dBic over the UHF band of 902-928MHz. According to our simulation results, two prototype antennas are manufactured and measured. The obtained antennas operate in UHF RFID bands and can be adapted for various portable applications. In addition, a parametric study is conducted to facilitate the design and optimization processes.

Effect of Adjustable Antenna Substrate Thickness on Aperture-Coupled Microstrip Antenna

  • Somsongkul, T.;Lorpichian, A.;Janchitrapongvej, K.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1664-1667
    • /
    • 2003
  • Aperture-coupled microstrip antenna is one type of microstrip antennas. This type of antenna has bandwidth wider than simple microstrip antenna. Herein, we use two substrates, that have the same dielectric constant 2.47 (PTFE-quartz) in which upper substrate is a rectangular patch. The microstrip patch is fed by a microstrip line which is printed on lower substrate, through an aperture or slot in the common ground plane of patch and microstrip feed. This antenna is analyzed by using Finite Difference Time Domain (FDTD) method the specific design frequency 10 GHz and match impedance is 50 ohms. The simulation results of its characteristics are input impedance, return loss, VSWR and radiation patterns respectively.

  • PDF

A Design for a Modified Circular Slot Antenna with a Fork-like Tuning Stub for UWB Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • This paper proposes and experimentally tests a modified circular slot antenna fed by a fork-like tuning stub for ultra-wideband (UWB) operation. The proposed antenna consists of a modified circular slot model and fork-like tuning stub. The proposed antenna is printed on a 34.0 mm × 30.0 mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.4. The effect of various parameters of the circular slot and fork-like tuning stub is investigated for UWB operation. The modified circular slot and fork-like tuning stub are fabricated on the substrate to achieve wideband operation and good impedance matching. Experimental results demonstrated that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the -10 dB impedance bandwidth requirement while simultaneously covering the UWB bands. In addition, the proposed antenna shows good radiation characteristics and gains in the UWB bands.

Microwave Properties of Ag Conducting Paste with Various Preparation Conditions (Ag가 함유된 전도성 도료의 제조 조건에 따른 고주파 특성)

  • Park, Sang-Hoon;Kim, Jeong-Pyo;Seong, Won-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.827-832
    • /
    • 2005
  • Dual band internal antennas were fabricated with Ag conducting paste of various preparation conditions and different print thickness by silk screen print. We have investigated microwave properties were compared Ag conducting paste antenna with copperplate antenna at 800 MHz and 1,800 MHz. Gain of Ag conducting paste antenna was improved when preparation conditions were the single size Ag particle, using dry type resin and high Ag containing percent. However, it was lower than that of copperplate antenna within $0.1\~2.0dBi$ at 800MHz. In addition, it was improved at 800MHz when thickness of Ag conducting paste was printed more than skin depth but it was held after critical print thickness. On the other hand, it was reached level of copperplate antenna at 1,800MHz.

A Design for a CPW-Fed Monopole Antenna with Two Modified Half Circular Rings for WLAN/WiMAX Operations

  • Kim, Woo-Su;Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.159-166
    • /
    • 2015
  • In this paper, a novel design for a triple-band coplanar waveguide (CPW)-fed monopole antenna for WLAN/WiMAX operations is proposed. The proposed antenna is printed on an FR4 substrate with an area of 22.0 mm × 30.0 mm, a thickness of 1.0 mm, and a relative permittivity of 4.4. The effects of various parameters of the proposed for triple band operation is investigated. Two half circular rings and a microstrip feed line are fabricated on the substrate to achieve triple band operation and good impedance matching. Prototypes of the proposed antenna have been fabricated and tested. Experiment results reveal that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the impedance bandwidth requirement of -10 dB, while simultaneously covering the WLAN and WiMAX bands. In addition, the proposed antenna shows good radiation characteristics and gains in the three operating bands.

Parametric Study of Slow Wave Structure for Gain Enhancement and Sidelobe Suppression (이득 증가와 부엽 억제를 위한 저속파 구조의 설계변수에 대한 연구)

  • Park, Se-Been;Kang, Nyoung-Hak;Eom, Soon-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1059-1068
    • /
    • 2016
  • This paper proposes slow wave structure(SWS) utilized to increase antenna gain of printed dipole antenna(PDA) and to suppress sidelobe level simultaneously, and makes sure of electrical characteristics of the antenna according to parameter variations of components of the slow wave structure. The printed slow wave structure which is composed of a dielectric substrate and a metal rods array is located on excited direction of the PDA, affecting the radiation pattern and its intensity. Parasitic elements of the metal rods are arrayed in narrow consistent gap and have a tendency to gradually decrease in length. In this paper, array interval, element length, and taper angle are selected as the parameter of the parasitic element that effects radiation characteristics. Magnitude and phase distribution of the electrical field are observed and analyzed for each parameter variations. On the basis of these results, while the radiation pattern is analyzed, array methods of parasitic elements of the SWS for high gain characteristics are provided. The proposed antenna is designed to be operated at the Wifi band(5.15~5.85 GHz), and parameters of the parasitic element are optimized to maximize antenna gain and suppress sidelobe. Simulated and measured results of the fabricated antenna show that it has wide bandwidth, high efficiency, high gain, and low sidelobe level.

Hybrid MIMO Antenna Using Interconnection Tie for Eight-Band Mobile Handsets

  • Lee, Wonhee;Park, Mingil;Son, Taeho
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.185-193
    • /
    • 2015
  • In this paper, a hybrid multiple input multiple output (MIMO) antenna for eight-band mobile handsets is designed and implemented. For the MIMO antenna, two hybrid antennas are laid symmetrically and connected by an interconnection tie, thereby enabling complementary operation. The tie affects both the impedance and radiation characteristics of each antenna. Further, printed circuit board (PCB) embedded type is applied to the antenna design. To verify the results of this study, we designed eight bands-LTE class 12, 13, and 14, CDMA, GSM900, DCS1800, PCS, and WCDMA-and implemented them on a bare board the same size as the real board of a handset. The voltage standing wave ratio (VSWR) is within 3:1 over the entire design band. Antenna isolation is less than -15 dB at the lower band, and -12 dB at the WCDMA band. Envelope correlation coefficient (ECC) of 0.0002-0.05 is obtained for all bands. The average gain and efficiency are measured to range from -4.69 dBi to -2.88 dBi and 33.99% to 51.5% for antenna 1, and -4.74 dBi to -2.97 dBi and 33.45% to 50.49% for antenna 2, respectively.