• 제목/요약/키워드: Principle Component Analysis(PCA)

검색결과 182건 처리시간 0.023초

다층퍼셉트론의 잡음 강건성 (On the Noise Robustness of Multilayer Perceptrons)

  • 오상훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 추계종합학술대회 논문집
    • /
    • pp.213-217
    • /
    • 2003
  • 이 논문에서는 MLP(Multilayer Perceptron)가 지닌 잡음 강건성에 대한 통계학적 분석을 하였다. 또한, MLP의 잡음 강건성을 향상시키기 위한 선형적 전처리 단계로써, ICA(independent component analysis)와 PCA(principle component analysis)를 고려하여, 이들이 지닌 잡음처리 효과를 분석한후, MLP와 접목시 나타나는 잡음 강건성의 향상 여부를 필기체 숫자 인식의 시뮬레이션으로 확인하였다.

  • PDF

주성분 분석을 이용한 상수도 관망의 누수감지 (Leak Detection in a Water Pipe Network Using the Principal Component Analysis)

  • 박수완;하재홍;김기민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.276-276
    • /
    • 2018
  • In this paper the potential of the Principle Component Analysis(PCA) technique that can be used to detect leaks in water pipe network blocks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study. The algorithms were designed to extract a partial set of flow data from the original 24 hour flow data so that the variability of the flows in the determined partial data set are minimal. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The results showed that the effectiveness of detecting leaks may improve by applying the developed algorithm. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks in real-world water pipe networks.

  • PDF

PCA-기반 고장 진단 시스템 설계에 관한 연구 (A study on the design of fault diagnostic system based on PCA)

  • 김성호;이영삼;한윤종
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.600-605
    • /
    • 2003
  • 주성분 분석은 공정의 모니터링과 고장진단을 위한 유용한 방법으로 알려져 있으며 일반적으로 잔차와 주성분의 해석을 통하여 고장의 원인을 분류하고 있다. 대규모 공정에서는 이러한 방법이 적용상의 한계를 가지고 있다. 본 논문에서는 보다 향상된 고장진단을 위해 주성분 분석에 FCM-기반 고장 진단 알고리즘을 결합하였고 Two-tank 시스템을 이용하여 주성분 분석을 이용한 FCM-기반 고장진단 알고리즘의 구현하여 적용하였다.

빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선 (ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation)

  • 김지운;정재호
    • 한국통신학회논문지
    • /
    • 제29권1C호
    • /
    • pp.65-71
    • /
    • 2004
  • 본 논문은 주성분분석(PCA, Principle Component Analysis) 혹은 독립성분분석(ICA, Independent Principle Component Analysis)를 이용하여 HMM(Hidden Markov Model) 파라메타의 차수를 감소시킴으로써 MLLR(Maximum Likelihood Linear Regression) 화자 적응 알고리즘을 개선하였다. 데이터의 특징을 잘 나타내는 PCA와 ICA를 통해 모델 mixture component의 상관관계를 줄이고 상대적으로 데이터의 분포가 적은 축을 삭제함으로써 추정해야 하는 적응 파라메타의 수를 줄였다. 기존의 MLLR 알고리즘은 SI(Speaker Independent)모델 보다 좋은 인식성능을 나타내기 위해 30초 이상의 적응 데이터가 요구되었고, 반면 제안한 알고리즘은 적응 파라메타의 수를 감소시킴으로써 10초 이상의 적응데이터가 요구되었다. 또한, 36차의 HMM 파라메타는 기존의 MLLR 알고리즘과 비슷한 인식성능을 나다내는 10차의 주성분이나 독릭성분을 사용함으로써 MLLR 알고리즘에서 적응파라메타를 추정할 때 요구되는 연산량을 1/167로 감소시켰다.

HisCoM-PCA: software for hierarchical structural component analysis for pathway analysis based using principal component analysis

  • Jiang, Nan;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.

다층퍼셉트론의 잡음 강건성 분석 및 향상 방법 (An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제9권1호
    • /
    • pp.159-166
    • /
    • 2009
  • 이 논문에서는 다층퍼셉트론(MLP:Multilayer Perceptron)에서 입력에 잡음이 섞인 경우 출력노드의 확률밀도 함수를 유도하고, 이의 적분으로 잡음에 의하여 패턴이 오인식될 확률을 유도하였다. 그리고, 이를 향상시키는 선형적 방법을 제안하였다. 즉, 독립성분분석(ICA: independent component analysis)과 주성분분석(PCA: principle component analysis)를 적용하여, 이들이 지닌 잡음 처리 효과를 SNR(Signal-to-Noise Ratio) 관점에서 분석하였다. 그리고 이들이 잡음을 처리한 후 MLP에 입력 시 나타나는 잡음 강건성을 필기체 숫자 인식의 시뮬레이션으로 확인하였다.

Wavelet 과 PCA 기법을 이용한 효율적 데이터 전송기법 개발에 관한 연구 (Study on the Development of effective data transmission Scheme based on Wavelet and PCA)

  • 육의수;한윤종;김성호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.525-528
    • /
    • 2004
  • 최근 인터넷 및 무선 통신기술의 광범위한 보급으로 인해 현장 계측 데이터 등과 같은 중요 데이터를 인터넷을 통해 실시간으로 수신 가능케 하는 다양한 형태의 웹 기반 원격 모니터링 시스템이 설계되고 있다. 이러한 웹 모니터링 시스템은 기본적으로 짧은 주기마다 측정된 데이터를 원격의 서버로 전송하는 것이 바람직하나 과도한 통신비 문제로 인해 효율적인 시스템 운영이 어렵다는 문제점을 갖는다. 따라서 본 연구에서는 측정데이터의 변화를 효율적으로 검출할 수 있는 PCA(Principle Component Analysis) 기법과 데이터 압축에 탁월한 특성을 갖는 wavelet 기법을 융합한 새로운 형태의 웹 기반 원격모니터링용 데이터 전송기법을 제안하고 실제 데이터에 적용하여 봄으로써 제안된 기법의 유용성을 확인하고자 한다.

  • PDF

Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교 (Face recognition rate comparison using Principal Component Analysis in Wavelet compression image)

  • 박장한;남궁재찬
    • 전자공학회논문지CI
    • /
    • 제41권5호
    • /
    • pp.33-40
    • /
    • 2004
  • 본 논문에서는 웨이블릿 압축을 이용하여 얼굴 데이터베이스를 구축하고, 주성분 분석(Principal Component Analysis : PCA) 알고리듬을 이용하여 얼굴 인식률을 비교한다. 일반적인 얼굴인식 방법은 정규화된 크기를 이용하여 데이터베이스를 구축하고, 얼굴 인식을 한다. 제안된 방법은 정규화된 크기(92×112)의 영상을 웨이블릿 압축으로 1단계, 2단계, 3단계로 변환하고 데이터베이스를 구축한다. 입력 영상도 웨이블릿으로 압축하고 PCA 알고리듬으로 얼굴인식 실험을 하였다 실험을 통하여 제안된 방법은 기존 얼굴영상의 정보를 축소할 뿐만 아니라 처리속도도 향상되었다. 또한 제안된 방법은 원본 영상이 99.05%, 1단계 99.05%, 2단계 98.93%, 3단계 98.54% 정도의 인식률을 보였으며, 대량의 얼굴 데이터베이스를 구축하여 얼굴인식을 하는데 가능함을 보였다.

PCA와 TDNN을 이용한 비정상 패킷탐지 (An Intrusion Detection System Using Principle Component Analysis and Time Delay Neural Network)

  • 정성윤;강병두;김상균
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.285-288
    • /
    • 2003
  • 기존의 침입탐지 시스템은 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 하고, 그 규칙과 완전히 매칭되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis ; 이하 PCA)과 시간지연신경망(Time Delay Neural Network ; 이하 TDNN)을 이용한 침입탐지 시스템을 제안한다. 패킷은 PCA를 이용하여 주성분을 결정하고 패킷이미지패턴으로 만든다. 이 연속된 패킷이미지패턴을 시간지연신경망의 학습패턴으로 사용한다.

  • PDF