• 제목/요약/키워드: Principal-Component-Analysis

검색결과 2,543건 처리시간 0.039초

최근 5년간 국내 연근해에서 발생한 해양사고에 대한 주성분분석 (Principal Component Analysis on Marine Casualties Occurred at Korean Littoral Sea in Recent 5 Years)

  • 김영식
    • 수산해양교육연구
    • /
    • 제28권2호
    • /
    • pp.465-472
    • /
    • 2016
  • 본 연구에서는 2010년부터 2014년까지 최근 5년간 우리 나라 주변해역에서 발생하여 중앙해양안전심판원의 재결을 마친 1417건의 해양사고에 대해 이를 25개 요인별로 분류하고, SPSS 통계 프로그램에 의한 주성분분석(Principal Component Analysis; PCA)을 행하여 이들 각 요인들의 상관성 및 주요 해양원인을 분석 고찰하였다. 얻어진 주요한 결과들을 요약하면 다음과 같다. 1. 해양사고의 주된 원인은 기관설비취급불량, 화기취급불량, 항행법규소홀, 침로선정유지불량, 경계소홀 등 기관실 및 조타실 관련 인적요인에 의해 발생한다. 2. 조타실 관련 인적요인에 의해 발생하는 사고는 충돌과 좌초 등이 큰 비중을 차지하며, 기관실 관련 인적요인에 의해 발생하는 사고유형은 주로 기관손상이나 화재폭발 등이다. 3. 주성분분석의 결과 제1주성분은 해양사고의 출현율을, 제2주성분은 해양사고의 원인을, 제3주 성분은 해양사고의 유형을 나타낸다.

주요성분분석과 고정점 알고리즘 독립성분분석에 의한 얼굴인식 (Face Recognition by Using Principal Component Anaysis and Fixed-Point Independent Component Analysis)

  • 조용현
    • 한국산업융합학회 논문집
    • /
    • 제8권3호
    • /
    • pp.143-148
    • /
    • 2005
  • This paper presents a hybrid method for recognizing the faces by using principal component analysis(PCA) and fixed-point independent component analysis(FP-ICA). PCA is used to whiten the data, which reduces the effects of second-order statistics to the nonlinearities. FP-ICA is applied to extract the statistically independent features of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.

  • PDF

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

Principal Component Analysis of BGP Update Streams

  • Xu, Kuai;Chandrashekar, Jaideep;Zhang, Zhi-Li
    • Journal of Communications and Networks
    • /
    • 제12권2호
    • /
    • pp.191-197
    • /
    • 2010
  • In this paper, we propose a novel methodology to identify border gateway protocol (BGP) updates associated with major events - affecting network reachability to multiple ASes - and separate them (statistically) from those attributable to minor events, which individually generate few updates, but collectively form the persistent background noise observed at BGP vantage points. Our methodology is based on principal component analysis, which enables us to transform and reduce the BGP updates into different AS clusters that are likely affected by distinct major events. We demonstrate the accuracy and effectiveness of our methodology through simulations and real BGP data.

Motion Recognition using Principal Component Analysis

  • Kwon, Yong-Man;Kim, Jong-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.817-823
    • /
    • 2004
  • This paper describes a three dimensional motion recognition algorithm and a system which adopts the algorithm for non-contact human-computer interaction. From sequence of stereos images, five feature regions are extracted with simple color segmentation algorithm and then those are used for three dimensional locus calculation precess. However, the result is not so stable, noisy, that we introduce principal component analysis method to get more robust motion recognition results. This method can overcome the weakness of conventional algorithms since it directly uses three dimensional information motion recognition.

  • PDF

Interpretation of Agronomic Traits Variation of Sesame Cultivar Using Principal Component Analysis

  • Shim, Kang-Bo;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Jang-Whan;Byun, Jae-Cheon;Park, Keum-Yong
    • 한국작물학회지
    • /
    • 제54권1호
    • /
    • pp.24-28
    • /
    • 2009
  • This study was conducted to evaluate the growth characters and yield components of 18 collected sesame cultivars to get basic information on the variation for the sesame breeding using principal component analysis. All characters except days to flowering, days to maturity and 1,000 seed weight showed significantly different. Seed weight per 10 are showed higher coefficient of variance. Capsule bearing stem length and liter weight showed positive correlation with seed yield per 10 are. The principal components analysis grouped the estimated sesame cultivars into four main components which accounted for 83.7% of the total variation at the eigenvalue and its contribution to total variation obtained from principal component analysis. The first principal component ($Z_1$) was applicable to increase plant height, capsule bearing stem length and 1,000-seed weight. The second principal component ($Z_2$) negatively correlated with days to flowering and maturity by which it was applicable to shorten flowering and maturity date of sesame. At the scatter diagram, Yangbaek, Ansan, M1, M2, M4, M7 and M9 were classified as same group, but M10, Yanghuk, Kanghuk, M5, M6, M12 and M13 were classified as different group. This results would be helpful for sesame breeder to understand genetic relationship of some agronomic characters and select promising cross lines for the development of new sesame variety.

Incremental Eigenspace Model Applied To Kernel Principal Component Analysis

  • Kim, Byung-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.345-354
    • /
    • 2003
  • An incremental kernel principal component analysis(IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis(KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenvectors should be recomputed. IKPCA overcomes this problem by incrementally updating the eigenspace model. IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the classification problem on nonlinear data set.

  • PDF

Resistant Singular Value Decomposition and Its Statistical Applications

  • Park, Yong-Seok;Huh, Myung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • 제25권1호
    • /
    • pp.49-66
    • /
    • 1996
  • The singular value decomposition is one of the most useful methods in the area of matrix computation. It gives dimension reduction which is the centeral idea in many multivariate analyses. But this method is not resistant, i.e., it is very sensitive to small changes in the input data. In this article, we derive the resistant version of singular value decomposition for principal component analysis. And we give its statistical applications to biplot which is similar to principal component analysis in aspects of the dimension reduction of an n x p data matrix. Therefore, we derive the resistant principal component analysis and biplot based on the resistant singular value decomposition. They provide graphical multivariate data analyses relatively little influenced by outlying observations.

  • PDF

주성분 분석기법을 이용한 심전도 기반 개인인증 (ECG based Personal Authentication using Principal Component Analysis)

  • 조주희;조병준;이대종;전명근
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.258-262
    • /
    • 2017
  • The PCA(Principal Component Analysis) algorithm is widely used as a technique of expressing the eigenvectors of the covariance matrix that best represents the characteristics of the data and reducing the high dimensional vector to a low dimensional vector. In this paper, we have developed a personal authentication method based on ECG using principal component analysis. The proposed method showed excellent recognition performance of 98.2 [%] when it was experimented using electrocardiogram data obtained at weekly intervals. Therefore, it can be seen that it is useful for personal authentication by reducing the dimension without changing the information on the variability and the correlation set variable existing in the electrocardiogram data by using the principal component analysis technique.

주성분 분석과 지리정보시스템을 이용한 충청북도 농촌 지역의 유형화 (A Classification of Rural Area Using Principal Component Analysis and GIS)

  • 박진선;주호길;윤성수;리신호
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.131-134
    • /
    • 2003
  • The purpose of this study is for classification to do a short distance rural area with the object to the center to Cheongju area. This study used principal component analysis and geography information system, and it was disciplined oneself. It was done a study object region to Cheongju-si, Cheongwon-gun Goesan-gun, Eumseong-gun, and we divided an index by of 22 large class and 104 small class, and the SPSS analyzed the Principal Component Analysis. We used a Geography Information System, and it was made graphical data by the results that have finished Principal Component Analysis.

  • PDF