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Abstract

The singular value decomposition is one of the most useful methods
in the area of matrix computation. It gives dimension reduction which
is the centeral idea in many multivariate analyses. But this method
is not resistant, i.e., it is very sensitive to small changes in the input
data. In this article, we derive the resistant version of singular value
decomposition for principal component analysis. And we give its sta-
tistical applications to biplot which is similar to principal component
analysis in aspects of the dimension reduction of an n x p data ma-
trix. Therefore, we derive the resistant principal component analysis
and biplot based on the resistant singular value decomposition. They
provide graphical multivariate data analyses relatively little influenced
by outlying observations.
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1. INTRODUCTION

The singular value decomposition is one of the most useful methods in the
area of matrix computation. The singular value decomposition of an n x p
data matrix X easily gives dimensional reduction which is a central idea in
principal component analysis. Traditionally, the eigensystem of X'X is used
for dimensional reduction in principal component analysis. As a practical
matter, however, there are reasons for preferring the use of the singular value
decomposition (Belsley, et al. (1980, p. 99)). In particular, we note that
in operating directly on the n x p matrix X, the singular value decomposi-
tion avoids the additional computational burden of forming X'X and it gives
useful means giving graphical relations of rows and columns of X in lower
dimensional space. In other words, the dimensional reduction of the matrix
X can be easily established by the singular value decomposition.

Some multivariate analyses (principal component biplot, correspondence
analysis and principal factor anaysis) are similar to principal component anal-
ysis in aspects of the dimensional reduction of an n x p data matrix X. In
particular, principal component biplot is a technique not only for standard
n x p data matrix but also for any two-way array of data. Gabriel (1971)
showed that the computational techniques and geometry of principal compo-
nent biplot were equivalent to those of principal component analysis in spirit.
In fact, all techniques which are similar to principal component analysis adopt
the singular value decomposition for main algebraic tool. However, we note
that the singular value decomposition of the data matrix is not resistant in
the sense that it is very sensitive to small changes in the data matrix.

The aims of this article are:

1) to develop the resistant version of singular value decomposition, and
2) to give its applications to principal component analysis and biplot.

The main approach is similar to that of robust regression. The devel-
opment of robust regression becomes a popular topic for statistical research
(Cook and Weisberg (1982, pp. 200-204); Li (1985)).

In Section 2, we derive the algorithm for a resistant version of principal
component analysis. This is based on the resistant eigensystem calculation
using iterative procedure. In Section 3, we derive the resistant singular value
decomposition, which is similar to construction of the singular value decompo-
sition from eigensystem and principal components. In Section 4, we develop
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the resistant principal component biplot using the resistant singular value
decomposition of Section 3. In Section 5, numerical illustrations are given.
In Section 6, concluding remarks are given. Finally, Appendix provides the
proofs of optimization problem and goodness of resistant approximation of
Section 2.

2. RESISTANT PRINCIPAL COMPONENT ANALYSIS

Consider an n x p data matrix X = (z;;) ,i = 1,...,n;5 = 1,...,p. Sub-
tracting out the mean of each variables such as z ; = 3.7, z;;/ n, we obtain a
new n x p data matrix X — (z;; —%;),i=1,...,n;5 = 1,...,p, which is called
variables-centered.

As noted by some authors (Lebart, et al. (1984, Chapter 1), Jolliffe (1986,
Chapter 3) and Seber (1984, Chapter 5)), traditionally, principal compo-
nent analysis is based on the eigensystem of cross product matrix X'X, or is
achieved by the singular value decomposition of a data matrix X itself. Here,
we note that the data matrix X is centered by subtracting the mean of each
variables from original data.

By the way, it is well known that the sample mean as location estimator is
not resistant. So if there exist outliers in data, principal component analysis
which depends on both eigensystem of X'X and singular value decomposition
of X do not give the desirable results. We note that if S is a p-variate  sample
variance-covariance matrix corresponding to X of rank r, then S = X’X/ n.
That is to say, the sample mean which is not resistant 1nﬂuences the sample
variance-covariance matrix. And then the sample variance-covariance is, un-
fortunately, very sensitive to outliers. So it is necessary to obtain the robust
sample variance-covariance matrix without the influence of outliers in data.
Some authors (Gnanadesikan and Kettenring (1972), Campbell (1980), Hu-
ber (1981, pp. 199-242), Matthews (1984), Devlin, et al. (1981) and Rivest
and Plante (1988)) give a variety of approaches for obtaining robust covari-
ance and correlation matrices. Specially, Devlin, et al. (1981) compare the
performances of several robust procedures for obtaining a correlation ma-
trix. They recommended the use of robust location estimators instead of the
sample mean of each variables with very high-dimensional data. More re-
cently, Rivest and Plante (1988) give robust principal component based on
the Marona (1976)’s multivariate generation of M-estimators.
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__ Now first, instead of mean of variables in a variable-centered data matrix
X, define a resistant version of mean of the j** variables as T;(X), j =1, ..., p.
By subtracting out it from a data matrix X, we obtain a new data matrix
X =(z;) = (z;; — T;(X)), i =1,...,n; j = 1,...p. Let X* = (X3, .-, X.) be
the row representation where X} = (zj,...,Z},)’, ¢ = 1,...,n, can be viewed
as n points in a p-dimensional space R?. Consider the § = span(vy,...,V,)
as a subspace of dimension s(1 < s < p) of R” and then this is spanned by
orthonormal p x s vector V = (v, ...,V,).

Letting X; in S be the nearest point of an arbitrary point X; in R?, we
have

X, —%X =, - VV)X].
So the squared distance d;‘z of X} from X} in S is given by
&' = % -% " =% (L, - VV)%].

Let d] = || X} — %! | = [% (I, = VV')X!]V2, and consider the minimization
of

Dy =3 p(d;) = ol % = %; 1), (2.1)
i=1 i=1

where \ ]
B t°/2, for |t |< ¢,
p(t) —{ clt|=c/2, for|t|>e.

Here p(-) is Huber’s type and also we can use other types of p(-), say that
of Andrews, as given in Li (1985, Table 8.2, p. 293). We will show that
the minimization of (2.1) yields a resistant version of principal component
analysis and singular value decomposition of X*. From this result, we have
the resistant singular value decomposition.

Consider the problem of minimization of (2.1) subject to viv, = 0(j # k)
and ||v;|| =1, j,k = 1,...,s. By the analogous Lagrangian method, we will
obtain the v, k = 1,..., s, sequentially, for this optimization problem. For
the details of procedures solving this problem, see Section 1 of Appendix.
Therefore, the optimal s-dimensional subspace is found by

(X" DX )i = AV, k= 1,..,8. (2.2)

Here vi, k = 1, ..., s are eigenvectors corresponding to the first s largest eigen-
values /\,:2 =X, k=1,..50f X" DwX*, D = diag(wy,..,w,) with w; =
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Y| X =7 1)/ | X; — X7 |l, 2 =1,...,n, and ¢ (-) is the derivative of p(-). We
call (2 2) a resistant elgensystem of X* D.X".

We note that in the above procedure, calculation of the resistant eigensys-
tem can be done by using iterative procedure with traditional eigensystem.
And the algorithm for a resistant version of principal component analysis
proceeds as follows:

Step 1: Take as a tentative vector v, the kt" eigenvector from the eigensys-
tem of X' X* where X" is made by subtracting out the resistant version
of mean for the j'* variables of original data matrix X.

Step 2: Determine the w; = ¥(|| X} — X! )/ X - X! |l,¢ = 1,... ,n and
then calculate a resistant estimator of sample mean as

= Zwi93ij/ Zwi’ J=1..,p,
i=1 1=1

and make a new X' by subtracting out T;(X),j = 1,...,p, from the
original X.

Step 3: Determine the eigenvalues and eigenvectors from the resistant eigen-
system of X* Dy, X* using the w;,i = 1, ...,n, from Step 2. We call these
resistant eigenvalues and eigenvectors.

Step 4: Repeat Steps 2 to 3 until, on each successive procedure, the absolute
difference between the tentative and updated eigenvectors becomes less
than or equal to £ which is sufficiently small.

Also as discussed in Lebart et al. (1984, Chapter 1), Jolliffe (1986, Chapter
3), and Murtagh and Heck (1987), since the principal components in the
subspace of R” are generated by v,, k = 1, ..., s, the coordinates of the points
are the components of X*‘v,c We note that the DW norm of the vector X*v,C
is A\; because X Vk”Dw = v, (X" Do X"V, = AL

Also in dual space R", we obtain the normalized coordinates vector u,
such that uiDwu, = 0(j # k) and |lu;llp,, = 1, j,k = 1,..., s, corresponding
to the eigenvalue A}f # 0 is given by

u, = i*vk/ui*vknnw = (1/A)X" v;. (2.3)

53
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Remark: In deriving (2.2), we assumed that the scale parameter o (a mea-
sure of spread) was fixed. Without loss of generality, we assumed ¢ = 1. In
practice, however, o must be estimated. In particular, Li (1985) and Hoaglin,
et al. (1976, Chapter 12) discussed this problem in robust regression and in
robust estimation of location respectively. In our case, before each iterative
step in the algorithm for resistant principal component anlysis, we note that
| %1 — %7 ||*/0%(G =1, ...,n) where || X; — %] || is the residual vector which is
orthognal to the s-dimensional subspace, is an approximate x? distribution
with p — s degrees of freedom. So we use the median scale estimator

~ ~% font 2y
o = (med(|| X} — X} | )/X.250(p-a))1/2

where x%,,_,, is 50 percentile point of x? distribution with p — s degrees of
freedom. Therefore in computing (2.2) actually, we used Dy, = diag(wy, ..., w,)
where w; = ¥ (]| X} — X7 ||/o)/(|| X; — X! || /7). Note that an important rea-
son for the widespread use of the median scale is its excellent resistance: the

median scale has to be a reasonably robust estimator of scale (Hoaglin, et al.
(1976, pp. 365-414)).

So far, for the resistant principal component analysis it has been seen that
the eigenvectors corresponding with the s(1 < s < p) largest eigenvalues yield
the optimal s-dimensional subspace of R" and its normalize coordinates.

Now we provide a measure of the quality of s-dimensional approximation
in resistant principal component analysis. We call this a goodness of resistant
approximation. As well known in traditional goodness of approximation in
principal component analysis, this can be calculated by

=AY (2.4)
k=1 k=1

For the proof of (2.4}, see Section 2 of Appendix.

3. RESISTANT SINGULAR VALUE DECOMPOSITION

Generally, it is well known that the singular value decomposition eas-
ily gives dimensional reduction in principal component analysis. Although
singular value decomposition is derived from the eigensystem and principal
components, this is an alternative view of principal component analysis in
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the useful aspects as discussed in Section 1 (Lebart, et al. (1984, Chapter
1); Jolliffe (1986, Chapter 3); Seber (1984, Chapter 5)). Similary the resis-
tant eigensystem (2.2) and principal components in (2.3) give the resistant
singular value decomposition.

Theorem. If X* is the n x p data matrix defined in Section 2, X* can be
written as

X" = UD,.V',

where Dy = diag(wy,..,w,) with w; = (| X =% )/ % =% |l,i =
1,..,n, Uis an n x p matrix such that U'D,U = I,,, Vis a p x p ma-
trix of elgenvectors of X* Dy X" such that V'V = VV' = L, and D,. =
diag(Af, ..., A;) with A" is the k™ eigenvalue of X* Dy X".

Proof. From the normalized coordinates vector u; in (2.3) corresponding to
the eigenvalue )\k # 0, we obtain X'v, = Apu;. Postmultiplying by v, and
summing over k gives

P P
v ! * !
X E ViV, = E AUV,
k=1 k=1
Hence, this reduces to

X" = UD,.V/,

where U, V and D,. are defined in the theorem. The proof is complete.

We note that the resistant singular value decomposition in Theorem is
a form of generalized singular value decomposition. Therefore the resistant
principal component analysis can be considered as a special case of the gen-
eralized principal component analysis (Greenacre (1984, Appendix A) and
Jolliffe (1986, pp. 223-226)).

4. RESISTANT PRINCIPAL COMPONENT BIPLOT

Biplot is a graphical dispaly of the rows and columns of an n x p matrix X,
allowing the visual appraisal of large data matrices. It is also closely related
to principal component analysis. This fact is well discussed in some works:
Gabriel (1971), Jolliffe (1986, pp. 72-85), and Choi (1991). In particular,
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Gabriel (1971) and Choi (1991) provide a principal component biplot hav-
ing several interesting statistical properties in the interpretation of rows and
columns. Its main algebraic tool is the singular value decomposition. But,
it is known that this approach is not resistant, as pointed out by Bradu and
Gabriel (1978).

Therefore, the purpose of this section is to obtain the resistant version of
principal component biplot based on the resistant singular value decomposi-
tion in Theorem of Section 3. We call this a resistant principal component
biplot by the analogy with resistant principal component analysis.

For deriving a resistant principal component biplot, the algorithm is sim-
ilar to the principal compomnent biplot well discussed in Gabriel (1971) and
Choi (1991).

First, consider the resistant singular value decomposition of n x p data
matrix X* of rank r centered at a robust location estimate. It is natural that
the resistant singular value decomposition of X* can be written by

.
X' = Y wAvg,
k=1
r

«7 *l—m
= Z(ukAk YA VL),

k=1
= (UD/\.’" )(VD/\,I-—M )/ (4.1)
where 0 < m < 1, U,V and D,. are well defined 1n Theorem of Section 3,
and Dy.» = diag(\]" ,..., AL ) and D, .1-n = diag(A] ", .0 AT,

Second, consider the n x p weighted data matrix le/ 2X" where Dy and
X* are pointed out in previous section. Naturally, it leads to a weighted
variance-covariance matrix

S = X" DwX'/n", (4.2)

where n* = ¥, w; = 1/, Dw1,. Note that this is another form of robust co-
variance estmlators in many works discussed in Section 2. Since the resistant
eigensystem of X" DywX"* as defined in Section 2 can be written by

X"'DwX' = VD,.: V' = Z AP vev, (4.3)

where V = (vy,...,v,) is the p x r orthonormal matrix such that Vive =
0(j # k) and ||lv;|| =1, j,k=1,..,r, (4.2) becomes

. 2
'SV, = AL v, k=1,..,7
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So we have the form of the resistant eigensystem for resistant principal com-
ponent analysis as discussed in Section 2. Now if we set m = 0 in (4.1), we
have a resistant factorization of X* as

X" =S w(rv,) = A'B", (4.4)
k=1

where A = (uy,...,u,) and B* = (vi}],...,v,.A}). In strict analogy with
Gabriel (1971), the following lemma gives the properties of an optimal s-
dimensional resistant principal component biplot.

Lemma. Consider the resistant rank s approximation i',,) to X* of (4.4). For
the purpose of biplotting in the s-dimensional resistant principal component
biplot, choose the resistant factors such as

1/2 1/2

Al,)=n"""(ug,..,u,) and B,y =n" " (viA],...,V,A]). (4.5)

8

Then i”a) can be factorized as

!

Xt = Al Bl
And we have the relationships such as
X' = A,)BiL),
X's'X" ~ A}, A,
S = BB,
where ~ denotes “is approximated by means of a least squares fit of rank s”.
From a viewpoint of the rank s resistant approximation as defined in

Section 2 of Appendix, it is natural that the quality of the rank s resistant
approximation X7,, is evaluated with the criterion

D IP WA SP
k=1 k=1
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5. NUMERICAL ILLUSTRATIONS

Example 1. To illustrate our resistant version of principal component anal-
ysis, we use the census-tract data (Johnson and Wichern, 1992, Table 8.2, p.
392). The data provides fourteen tract informations on five socioeconomic
variables for the Madison, Wisconsin area.

The optimal 2-dimensional display of principal component scores is given
in Fig. 1 with the goodness of approximation 0.9323, i.e., 93.23% of the
total variation is explained by the first two principal axes. In Fig. 1, the
capital letters and numbers are the row (forteen tracts) and the column (five
socioeconomic variables) markers respectively. We note that the row markers
B, C, G, J, K, L and M have similar patterns of behavior characterized by
low values on four variables 1 (total populaton), 3 (total emloyment) and
4 (health services employment), whereas row marker F has a higher score
for these variables. In fact, since the variables 1, 3 and 4 have the same
characteristic, natually, their angles in Fig. 1 must be small. Moreover, since
the variables 2 (median school years) and 5 (median value home) have the
same characteristic, their angle must be small. But these interpretations in
Fig. 1 are not clear.

PC2(19.09x)
1

A LA L B B L L A L L BB |

-4 -2 4 2 4 L3 8

PC1(74.132)

Fig. 1. Optimal 2-dimensional display by principal component analysis of
the census-tract data
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Now consider resistant principal component analysis with Andrews’ v (-)
function given by

_ [ esin(t/c), for 0 <t < em,
() = { 0, for t > cm,

with ¢ = 0.89. As in Remark of Section 2, we use 0.29 for the median scale
estimate. Actually, (cr)? is 95 percentile point of x? distribution with 3
degrees of freedom.

The final weights used in computing resistant eigensystem (2.2) are in the
diagonal matrix

Dy = diag(0.00, 0.00, 0.90, 0.43, 0.76, 0.81, 1.00,
0.00, 0.91, 0.88, 0.77, 0.00, 0.00, 0.00).

We note that in Dy, the elements having 0.00 (zero) are notable observations
The optimal 2-dimensional display of resistant principal component analysis
is shown in Fig. 2 with the goodness of resistant approximation 99.08%. By
reducing the influence of the notable tracts, Fig. 2 gives somewhat lucid
interpretations of principal component analysis.

PC2(17 . 443)

s o 1

| ISLANLIN I A LA I N T L L L B

-4 -1 0 ? 4 6 8

PCI{B1.64%)

Fig. 2. Optimal 2-dimensional display by resistant principal component
analysis of the census-tract data
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Another example using the protein consumption data (Greenacre (1984,
Table 9.9, p. 278)) is illustrated and discussed by Choi (1991).

Example 2. The data (Gabriel and Zamir (1979)) is the numbers of science
Ph. D. degrees awarded in the United States during the years 1960-1961 and
1970-1975.

The first two largest eigenvalues and their proportions of total variation
are 52.92 (96.46%) and 1.45 (2.61%). Thus the principal component biplot is
shown in Fig. 3 with the goodness of approximation 99.10%. In Fig. 3, note
that the row (twelve sciences) and column (years 1960-1961 and 1970-1975)
markers are denoted by the capital letters and numbers respectively.

We note that D (Chemistry), E (Earth Sciences) and G (Agricultural Sci-
ences) have smaller increases in column markers 1 (1960) and 2 (1961), but as
to the 3-8(1970-1975) changes, these appear less pronounced. A (Engineering)
and F (Biological Sciences) are increasing in 1970-1975. So we know that the
column markers 1-2 (the 1960’s) and 3-8 (the 1970’s) give different patterns
for the row markers respectively. But these interpretations are not clear for
the columns markers 3-8 (the 1970’s).

PC1(96.46%)

Fig. 3. Principal component biplot of the science doctorate award data
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Now consider resistant principal component biplot. In order to obtain
the resistant factors (4.5), we use the Andrews’ +(-) function as defined in
Example 1 where (cr)? is 95 percentile point of x? distribution with 6 degrees
of freedom and hence ¢ = 1.13. Of course, we use 0.05 for the median scale
estimate. Then we have the 12 > 12 diagonal matrix

Dy, = diag(0.00, 0.00, 0.00, 0.41, 0.88, 1.00,
0.72, 0.00, 0.50, 0.51, 0.00, 0.98).

In this case, we have the first two largest eigenvalues and their proportions
of total variation are 16.45 (95.91%) and 0.67 (3.93%).

PC1(95.91x)

Fig. 4. Resistant principal component biplot of the science doctorate
award data

The resistant principal component biplot with the resistant goodness of
approximation 99.84% is given in Fig. 4. It gives the optimal 2-dimensioanal
display of rows and columns of the data with greater dispersion by reducing
the influence of notable rows A (Engineering), B (Mathematics), C (Physics
and Astrometry), H (Psychology) and K (Anthropology) with weights 0.00.

For another example using the ability test data from du Toit, et al. (1986,
Table 1.1, p. 6), see Choi (1991).
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6. CONCLUDING REMARKS

In this paper, we limit ourselves to reducing the influence of outliers in the
singular value decomposition and obtaining the resistant version of it. And we
give its applications to principal component analysis and biplot. We note that
in the iterative procedure deriving the resistant version of it, the iteration is
continued until a reasonable degree of convergence is reached. But the degree
of convergence is not known exactly. And in choosing resistant estimators
of location and scale, we need to study problems of resistance as breakdown
point and influence functions of them.

APPENDIX : Proofs

1. Proof of the optimization problem in Section 2.

Consider the problem in minimization of D} = ¥, p(|| X; —X} ||) subject to
Vive =0(j Zk) and |lv;]| = 1, j,k = 1,...,s. By the traditional Lagrangian
method, we will obtain the v, k = 1, ..., s, sequentially, for this optimization
problem.

First, define the Lagragian expression in order to find a best vector v in
S for one-dimensional subspace:

L=3 ol % - 1)+ /2(Vv-1)

P~y

where || X} — X} || = [XI' X} — (v'X])?]"/? and A"/2 is a Lagrange multiplier.
Differentiating the objective function p(-) and constraint terms in Lagrangian
expressions with respect to v, we obtain

=2 U & =% /% - % % E V) + 3V =0,

where v (-) is the derivative of p(-).
Setting w; = % (| X — % I)/]l % — % ||, we have
S (wXE v =\,

which leads to . .
(X" DwX")v = A"v.



Resistant Singular Value Decomposition 63

__ Therefore, v is the eigenvector corresponding to the eigenvalue \* of
X*' Dy X* where Dy, = diag(wy, ...,w,). Hence the optimal value v; is the
eigenvector associated with the largest eigenvalue )\;2 = A" of the matrix
X" Dy X"

Next, let us find the second vector vy in & for two-dimensional sub-
space, that is the best approximation for the set of points obviously con-
tains the subspace defined by v;. This problem is to find v, minimizing
Yio(l X7 — X7 ||), subject to vive = 0 and vjvy = 1 where || X] — X} || =
[Xr'%r — (vix;)? — (v%2)]Y2. So we have Lagrangian equation:

ZP(” X; = X; ) + (A32/2)(vova — 1) + pa(vyvy)

where A},/2 and uo are Lagrange multipliers. Differentiating it with respect
to va, we have

— STl & =% D/ R — %R (R Va) + Ajpva + pavy = 0.

Let w; = ¥ (|| X; — X; [)/|| X; — X{ || and then premultiply both sides by - v,
we have

V(X" Dy X")vy = A3 ViVa + pavivi.
Since v, (X" DwX")vs = A}’ V| vy = 0, p must equal to 0. So we have
(i*l Dwi*)v2 = )\52V2.

By the similar fashion, the optimal s-dimensional subspace is obtained by
solving

X' DX )WVe = AL Vi k= 1,...,8.
The proof is complete.

2. Proof of the goodness of resistant approximation in Section 2.

The following discussion gives a lower rank resistant approximation. More-
over, this gives the goodness of resistant approximation based on the rank
s resistant approximation (Greenacre (1984, Appendix A) and Jolliffe (1986,
pp. 223-226)). This is similar to the generalized lower rank least squares
approximation.
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Let X* be the matrix of rank r and Dy be the diagonal matrix with
diagonal element w;,i = 1,...,n, defined in (2.2) of Section 2. Let M* be an
n X p matrix of rank s(s < r). The resistant matrix approximation

S
M =X(, = Z)\;ukvfr
k=1
minimizes
—_ 9 n - _
| X" =M |p,, = 2 wi(X; — m})' (X} — m)
i=1

among all matrices M" of rank less than or equal to s, where %; and m; are
the rows of X* and M* respectively. The minimum value is 3", _,,; AL
Since w; = ¢(|| X; — X ||)/|l X; — X} ||, which is the i** diagonal element
of Dy, gives the resistant procedures, we may call M* = X7, the rank s
resistant approximation of X*. And as well known in traditional goodness of
approximation, the goodness of resistant approximation can be calculated by

* F* eyt 2 T 2
go= 1-1X =X, 5 /1 X lpy
. * . * . »2 . *
= 1- Z )‘:/Z)‘kz = Z)‘k /E)‘kz'
k=s+1 k=1 k=1 k=1
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