• 제목/요약/키워드: Primitive

검색결과 1,240건 처리시간 0.03초

An Efficient Collision Queries in Parallel Close Proximity Situations

  • Kim, Dae-Hyun;Choi, Han-Soo;Kim, Yeong-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2402-2406
    • /
    • 2005
  • A collision query determines the intersection between given objects, and is used in computer-aided design and manufacturing, animation and simulation systems, and physically-based modeling. Bounding volume hierarchies are one of the simplest and most widely used data structures for performing collision detection on complex models. In this paper, we present hierarchy of oriented rounded bounding volume for fast proximity queries. Designing hierarchies of new bounding volumes, we use to combine multiple bounding volume types in a single hierarchy. The new bounding volume corresponds to geometric shape composed of a core primitive shape grown outward by some offset such as the Minkowski sum of rectangular box and a sphere shape. In the experiment of parallel close proximity, a number of benchmarks to measure the performance of the new bounding box and compare to that of other bounding volumes.

  • PDF

Pattern Discovery by Genetic Algorithm in Syntactic Pattern Based Chart Analysis for Stock Market

  • Kim, Hyun-Soo
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제3권
    • /
    • pp.147-169
    • /
    • 1994
  • This paper present s a pattern generation scheme from financial charts. The patterns constitute knowledge which consists of patterns as the conditional part and the impact of the pattern as the conclusion part. The patterns in charts are represented in a syntactic approach. If the pattern elements and the impact of patterns are defined, the patterns are synthesized from simple to the more highly credible by evaluating each intermediate pattern from the instances. The overall process is divided into primitive discovery by Genetic Algorithms and pattern synthesis from the discovered primitives by the Syntactic Pattern-based Inductive Learning (SYNPLE) algorithm which we have developed. We have applied the scheme to a chart : the trend lines of stock price in daily base. The scheme can generate very credible patterns from training data sets.

  • PDF

온톨로지 기반의 용어 정의 비교 및 유사도를 고려한 의미 매핑 (Semantic Mapping of Terms Based on Their Ontological Definitions and Similarities)

  • 정원철;이재현;서효원
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.211-222
    • /
    • 2006
  • In collaborative environment, it is necessary that the participants in collaboration should share the same understanding about the semantics of terms. For example, they should know that 'COMPONENT' and 'ITEM' are different word-expressions for the same meaning. In order to handle such problems in information sharing, an information system needs to automatically recognize that the terms have the same semantics. So we develop an algorithm mapping two terms based on their ontological definitions and their similarities. The proposed algorithm consists of four steps: the character matching, the inferencing, the definition comparing and the similarity checking. In the similarity checking step, we consider relation similarity and hierarchical similarity. The algorithm is very primitive, but it shows the possibility of semi-automatic mapping using ontology. In addition, we design a mapping procedure for a mapping system, called SOM (semantic ontology mapper).

Ontological 지식 기반 영상이해시스템의 구조 (Framework for Ontological Knowledge-based Image Understanding Systems)

  • 손세호;이인근;권순학
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.235-240
    • /
    • 2004
  • In this paper, we propose a framework for ontological knowledge-based image understanding systems. Ontology composed of concepts can be used as a guide for describing objects from a specific domain of interest and describing relations between objects from different domains The proposed framework consists of four main subparts ⅰ) ontological knowledge bases, ⅱ) primitive feature detectors, ⅲ) concept inference engine, and ⅳ) semantic inference engine. Using ontological knowledge bases on various domains and features extracted from the detectors, concept inference engine infers concepts on regions of interest in an image and semantic inference engine reasons semantic situations between concepts from different domains. We present a outline for ontological knowledge-based image understanding systems and application examples within specific domains such as text recognition and human recognition in order to show the validity of the proposed system.

  • PDF

Fusion of Hierarchical Behavior-based Actions in Mobile Robot Using Fuzzy Logic

  • Ye, Gan Zhen;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • 제10권2호
    • /
    • pp.149-155
    • /
    • 2012
  • This paper presents mobile robot control architecture of hierarchical behaviors, inspired by biological life. The system is reactive, highly parallel, and does not rely on representation of the environment. The behaviors of the system are designed hierarchically from the bottom-up with priority given to primitive behaviors to ensure the survivability of the robot and provide robustness to failures in higher-level behaviors. Fuzzy logic is used to perform command fusion on each behavior's output. Simulations of the proposed methodology are shown and discussed. The simulation results indicate that complex tasks can be performed by a combination of a few simple behaviors and a set of fuzzy inference rules.

Group Key Exchange over Combined Wired and Wireless Networks

  • Nam, Jung-Hyun;Won, Dong-Ho
    • Journal of Communications and Networks
    • /
    • 제8권4호
    • /
    • pp.461-474
    • /
    • 2006
  • A group key exchange protocol is a cryptographic primitive that describes how a group of parties communicating over a public network can come up with a common secret key. Due to its significance both in network security and cryptography, the design of secure and efficient group key exchange protocols has attracted many researchers' attention over the years. However, despite all the efforts undertaken, there seems to have been no previous systematic look at the growing problem of key exchange over combined wired and wireless networks which consist of both stationary computers with sufficient computational capabilities and mobile devices with relatively restricted computing resources. In this paper, we present the first group key exchange protocol that is specifically designed to be well suited for this rapidly expanding network environment. Our construction meets simplicity, efficiency, and strong notions of security.

소형 digital computer를 이용한 대전력계통의 해석 (Analysis of Large Power System by Small Digital Computer)

  • 박영문;정재길
    • 전기의세계
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 1974
  • This paper attempts to develop the algorithms and computer program for load flow solution and faults analysis of large power system by small digital computer. The Conventional methods for load flow solution and fault analysis of large power system require too much amount of computer memory space and computing time. Therefore, this paper describes the methad for reducing the computer memory space and computing time as follows. (1) Load Flow Solution; This method is to store each primitive impedance of lines along with a list of bus numbers corresponding to the both terminals of lines, and to store only nonzero element of bus admittance matrix. (2) Faults Analysis: This method is to partition a large power system into several groups of subsystems, form individual bus impedance matrix, store them in the storage, and assemble the only required portion of them to original total system by algorithm.

  • PDF

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun;Lee, Sung-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.535-543
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such as pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Clustering Algorithm by Grid-based Sampling

  • 박희창;유지현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.97-108
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because of clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy. It reduces running time by using grid-based sample. And other clustering applications can be more effective by using this methods with its original methods.

  • PDF

Clustering Algorithm using a Center Of Gravity for Grid-based Sample

  • 박희창;유지현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.77-88
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such that data analysis, pattern recognition, image processing, etc. But clustering requires many hours to get clusters that we want, because it is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new clustering method, 'Clustering algorithm using a center of gravity for grid-based sample'. It is more fast than any traditional clustering method and maintains accuracy. It reduces running time by using grid-based sample and keeps accuracy by using representative point, a center of gravity.

  • PDF