
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION
Collision detection problems and their variants are of vital

importance in many fields, such as computer animation,
physical simulation, computer simulated environments, solid
modeling and robot planning, especially with the emergent
fields of virtual reality [1-3]. The problems concern that fact
that two impenetrable objects cannot share a common region.
In computer animation, object simulated in the environments
change motions according to the contact constraints and
impact dynamics. It is critical to computer the response in time
when object collide. In physical simulation, complex inter-
actions of hundreds of parts in the virtual prototyping system
are simulated based on physics and geometry. It is important
to locate the intersection points when parts collide in order to
provide proper reaction. In virtual reality, a physical environ-
ment is simulated such that humans can readily visualize,
explore and interact with the virtual objects in the environment.
The virtual world will seem more believable if objects can
receive expectable natural behavior presented as feedback
from the objects in the virtual environment such as push, pull
and grasp. In order to create a sense of touch between the
user’s hand and a virtual object, contact or restoring forces are
generated to prevent penetrating into this virtual object. These
forces are computed by first detecting if a collision or pene-
tration has occurred, then determining the contact point on the
object surface.

Typically the proximity query problems have two parts.
The collision query algorithm and separation distance compu-
tation. A collision query determines intersection if geometric
contact has occurred between given two or more object. A
distance query computes the minimum Euclidean distance
between two objects. An architectural design system may
perform distance queries to verify that certain functional
components are separated by some minimum distance at all
points [4-5]. Algorithms for such queries have been exten-
sively studied in the literature. While a number of specialized
algorithms have been designed to handle a pair of a special
class of primitives, the most general algorithms are based on
bounding volume hierarchies. A bounding volume hierarchy is
a tree of bounding volumes whose collective leaf nodes
spatially enclose all the model geometry, and in which each
parent spatially encloses all the geometry covered by its
descendent leaf nodes as shown in Fig. 1.

Different bounding volume hierarchies are primarily cate-

goryized by the choice bounding volume type at each node of
the tree. Typical examples of bounding volumes include axis-
aligned boxes [6] and spheres, and they are chosen for to the
simplicity of finding collision between two such volumes.
Hierarchical structures used for collision detection include
cone trees, discretely-oriented polytopes and octree [7], sphere
trees [8-9], R-trees and their variants [10], tree based on
S-bounds, object oriented bounding box [11] etc. Other spatial
representations are based on BSP tree [12] and its ex- tensions
to multi space partitions [13], spatial representations based on
space-time bounds [14-15] and many more. All of these
hierarchical methods do very well in performing contact test,
whenever two objects are far apart. However, when the two
objects are in very close proximity, parallel close proximity
and multiple contacts, these algorithms either use sub- division
techniques or check very large number of bounding volume
pairs for potential contacts.

Fig. 1 A bounding volume hierarchy of spheres

In this paper, we present hierarchy of oriented rounding
volume for fast proximity queries. Designing hierarchies of
new bounding volumes, we use to combine multiple bounding
volume types in a single hierarchy. A major motivation in the
design of hybrid type hierarchies is to include simple shapes
like sphere for fast overlap tests and tight fitting bounding
volumes like oriented bounding box to reduce the number of
tests. A bounding volume corresponds to geometric shape
composed of a core primitive shape grown outward by some
offset such as the Minkowski sum of rectangular box and a
sphere shape. The resulting new bounding volume is like a
rounded box. We represent it using the rectangle, its center,
and a radius. In the parallel proximity query test, we examine
the performance comparisons among types of bounding
volumes.

An Efficient Collision Queries in Parallel Close Proximity Situations

Dae-Hyun Kim*, Han-Soo Choi**, and Yeong-Dong Kim**

*Department of Photoelectronic Information Engineering, Chosun College of Science & Technology, Gwangju, Korea
(Tel : +82-230-8036; E-mail: daehkim@chosun.ac.kr)

**Department of Information, Control and Instrumentation Engineering, Chosun University, Gwangju, Korea
(Tel : +82-62-230-7185, 7032; E-mail: hschoi, ydkim@chosun.ac.kr)

Abstract: A collision query determines the intersection between given objects, and is used in computer-aided design and manu-
facturing, animation and simulation systems, and physically-based modeling. Bounding volume hierarchies are one of the simplest
and most widely used data structures for performing collision detection on complex models. In this paper, we present hierarchy of
oriented rounded bounding volume for fast proximity queries. Designing hierarchies of new bounding volumes, we use to combine
multiple bounding volume types in a single hierarchy. The new bounding volume corresponds to geometric shape composed of a
core primitive shape grown outward by some offset such as the Minkowski sum of rectangular box and a sphere shape. In the
experiment of parallel close proximity, a number of benchmarks to measure the performance of the new bounding box and
compare to that of other bounding volumes.

Keywords: Collision detection, Proximity, Bounding volume, Top-down, parallel proximity

B

VB

B0

VB0

VB1VB2

B1

B2

B00 B01

B20

B21

B1

VB00

VB01

VB1

VB21

VB20

2402

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea
2. BOUNDING VOLUME HIERARCHIES

Considering the model consists of four line segments
named 1a through 4a , as shown in Fig. 2(a). The model is not
completely connected. It has two disconnected pieces. The
model can be recursively partitioned into a hierarchy, shown
in Fig. 2(b), such that the top-level node is the entire model,
the leaf nodes are the individual primitives elements, and each
node equals the union of its children. The example shown in
Fig. 2(b) is just one of many ways to partition the set of
primitives. These nodes can be labeled as shown in Fig. 2(c).
The top-level mode is the symbol for the whole model, the
name of any first child is the name of the parent with a “0”
subscript appended, and the name of second child has a “1”
subscript appended. Thus, the sequence of “0”s and “1”s
describes a path of “left” and “right” choices, starting at the
root, which leads to the given node. This naming convention
extends to any number of children using the digits “2”, “3”,
etc. These nodes are named subsets of the original model. The
sets A, A0, A1, A00, A01 and so forth can be assigned bounding
spheres. The bounding volume for a point set Ax is given the
symbolic name VAx. Thus the bounding spheres form their
own hierarchy, shown schematically in Fig. 2(d). We can
redraw the original model A along with each level of the
bounding volume hierarchy. Fig. 3(a) shows A with VA, the
sphere covering the entire model. Fig. 3(b) shows A0 and A1
with their bounding spheres. Finally, Fig. 3(c) shows the leaf
nodes of the hierarchy and the model primitives they enclose.
Now consider model B. The partitions of model B are given
names in manner similar to that of model A, and the structure
of the bounding volume hierarchy is also similar to that of
model A as shown in Fig. 1.

a1

a2

a3

a4

A
{ a1 a2 a3 a4 }

{ a1 a2 } { a3 a4 }

a1 a2 a3 a4

(a) Model A (b) Partitions

A

A0 A1

A00 A01 A10 A11

VA

VA0 VA1

VA00 VA01 VA10 VA11

(c) Named partitions (d) Bounding volumes
Fig. 2 Model A and symbolic representation

Given the two models and their placements in the world
space, the simplest approach to perform a collision query is to
test each of the four line segments in A against each of the five
line segments in B, requiring 20 pairwise primitives overlap
tests. While this approach is reasonable for relatively small
models such as these, we cannot perform exhaustive pairwise
testing on models which have millions of primitives. Instead,
we perform a trivial test by checking the top-level bounding
volumes for overlap. If the models are a little closer together,
as shown in Fig. 4(a), the top-level spheres touch and more
work is needed. There are several choices for our next step.
We will choose to test the children of VA, which are VA0 and
VA1, against VB, as is shown in Fig. 4(b). In this processing,
we say that we descend A to move from a comparisons bet-

ween the pair (VA, VB) to two comparisons, between the pair
(VA0, VB), and between the pair (VA1, VB). Since VA0 doesn’t
touch VB, the point set A0 doesn’t touch the point set B, and
likewise for A1 and B. Since A0 and A1 together make up the
entire model A, there is no contact between A and B. We
could have chosen to test the children of VB against model A,
as shown in Fig. 4(c), with the same result that A and B are
disjoint.

A

VA

VA0

A0

VA1

A1

VA00

VA01

VA10

VA11

A00

A01

A10

A11

(a) Top level (b) Second level (c) Leaf level
Fig. 3 Graphical display of the Model A

VA

VB

VA0

VB

VA1

VA

VB0

VB1

VB2

(a) Overlapping (b) Children of VA (c) Disjoints
Fig. 4 Situation of the models do not touch

When the models are actually in contact, we will not be
able to use bounding volume tests to bound the models
entirely apart. However, the bounding volume tests still enable
us to eliminate whole groups of potential contacts from con-
sideration. From this point, we could solve the contact leaf
nodes of two models independently, and merge their results
for the final answer. This formula can applied recursively, and
is the basis for the divide-and-conquer approach used in
bounding volume hierarchy based collision detection.

3. BOUNDING VOLUME ALGORITHMS
3.1 Cost of proximity queries

The fundamental operations of a proximity query are the
bounding volume overlap test and the primitive overlap test.
The time required to perform a collision query can be appro-
ximated as [16]

ppvv TNTNT ×+×= (1)

where vN and pN are number of overlap tests for bounding
volumes and primitives, respectively, and vT and pT are the
average times required to perform each such test. Queries
using simple bounding volumes, such as axis aligned
bounding boxes, exhibit large vN and small vT , while those
using complex bounding volumes such as convex hull or
oriented bounding boxes have smaller vN and large vT . Also,
using simple bounding volumes tends to increase pN , since
the leaf nodes of simple bounding volumes are less likely to
bound the models apart than those of complex bounding
volumes. It is not immediately obvious from this equation,
given the opposite tendencies of vT and vN , what is the best
choice of bounding volume type. Several factors contribute to
the cost of proximity query. Models with many polygons tend
to be more expensive to query than models with fewer
polygons. Proximity queries are more expensive when the

2403

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea
models are closer together than when they are farther apart.
Thus the cost of a proximity query depends not only on the
size of the number of polygons in the two models and the size
of the number of touching primitive pair found, but also on the
nature and degree of the proximity of the models. Therefore,
no bounding volume yields optimum performance for proxi-
mity queries in all situations. A major motivation in the design
of the oriented rounded bounding boxes is to include simple
shape like sphere for fast overlap tests and tight fitting
bounding volume like oriented bounding boxes to reduce the
number of test.

3.2 Oriented rounded bounding box
Basic algorithm to fitting an oriented rounded bounding

box to a model is first to choose an orientation for the bound-
ing box, and then to choose a center, minimal edge lengths,
and radius that enable it to cover the model. Suppose we have
selected an orientation for our bounding box, Let the three
vectors xv , yv , and zv be aligned with the face normal of
the bounding box. Also, let kp be the thk vertex of the model
being fitted, k ranges from 1 to n . Now project all the
vertices of the model, kp , onto each of the vectors. The
upper and lower extremes along each axis is given by

)(max xxkxu pv ⋅= ,)(max xxkxl pv ⋅=

)(max kykyu pv ⋅= ,)(max xykyl pv ⋅= (2)
)(max kzkzu pv ⋅= ,)(max kxkxl pv ⋅=

The thi axis of the bounding box is aligned with iv , and
the bounding box’s width along this axis will be given by

ii lu − , and the center point c for the bounding box is given
by

2/})()(){(zzzyyyxxx lululu vvvc +++++= (3)

Finally, the radius vector r for bounding sphere and the
center point zcp be aligned z axis are given by

2/)(zzz lu vr ⋅−= , 2/)(zzz lu +=cp (4)

Now repeat the upper and lower length,),,(zyxu ,
),,(zyxl aligned with r and zcp . This is processing to find

bounding box area more tightly.

)0,(22 dzrMaxOfTwouu ii −−= (5)

)0,(22 dzrMaxOfTwoll ii −+= (6)

where MaxOfTwo is macro to find the maximum number
between the two numbers. Fig. 5 shows the algorithm codes
for growing max. and min. points with corner compensation.

We use statistical techniques to computer orientation for the
bounding box. Our approach is based on first and second order
statistics summarizing the vertex coordinates, as used by [17].
They are the mean, µ , and the covariance matrix, C , respect-
tively. Let the vertices of the i th triangle be the points ia ,

ib , and ic . Our fitting algorithms use the eigenvectors of the
covariance matrix, C , to initially compute an bounding box
that encloses the underlying geometry. For fitting rounding
box, the smallest of the three dimensions of the bounding box
becomes the rectangle normal direction. This direction is most
likely to be the perpendicular to a nearly flat cluster of
triangles, and will allow the flat shape of the rounding box to
fit the geometry tightly. The other directions fix the orient-

tation of the rectangle and the rectangle dimensions are grown
appropriately to enclose all the geometry. The dimensions of
the rectangle are initially determined so that they enclose
triangles along the two side projections of the rounding box.

Fig. 5 Algorithm for finding bounding box parameters

2404

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea
We use a top-down strategy to create the nodes of our hie-

rarchy. This means that the hierarchy is build from the root
node downward. The triangles in each node of the tree,
starting with the root that contains all of the triangles, are split
into two subsets that become the children nodes of this node as
shown in Fig. 2. Nodes are recursively subdivided unless they
contain only a single triangle, which corresponds to a leaf
node of the hierarchy. Our splitting rule is the same used for
an [17]. A splitting axis is chosen, and a plane orthogonal to
the axis is used to partition the triangles into two sets,
according to which side of the plane their center point lies on.

3.3 Implementation
We have implemented all our algorithms as part of a

general purpose framework for performing proximity queries
using bounding volume hierarchies. The framework has been
implemented in C++ with OpenGL functions, and runs on top
of PC’s. The basic C++ “struct” types defining a model, a
bounding volume node, a face, and a vertex. The model block
is a simple C++ class which contains model-specific infor-
mation and pointers to the aforementioned arrays. The hie-
rarchies or tree data can be store the memory block for fast
access time. Fig. 6 shows the graphic-user-interface program.

Fig. 6 Implemented program with graphic user interface

4. BENCHMARKS AND ANALYSIS
We used number of benchmarks to measure the perfor-

mance of our new bounding volume and compare them with
other bounding volumes. Our goal was to include some
real-world benchmarks that consist of a variety of configu-
rations between the models. These include models in parallel
close proximity as well as models moving away from each
other. It is evident that lager models are generally more
expensive to query against than smaller models. Also, proxi-
mity queries take more work when the model are close than
when they are widely separated. These tendencies are dia-
grammed in Fig. 7(a). Every point on each surface is exactly a
given ε distance from the other surface. This is one of the
most challenging configurations that collision detection sys-
tems typically encounter. For this type of configuration, the
amount of work to process a collision query is a sensitive
function of the gap between the surfaces. The closer the sur-

faces are together, the more finely they must be approxi-
mated in order to bound them apart, requiring us to descend
the bounding volume hierarchies of both models are deeply.
Because every point on each model is close to the other model,
a reduction in the gap requires a query to descend to a greater
depth and every additional level descended doubles the
number of nodes visited.

(a) Parallel close proximity (b) Schematic of Exp.
Fig. 7 Schematic of parallel close proximity experiment

Fig. 7(b) shows a schematic diagram of an experiment
involving two concentric spheres. In this experiment we
placed a 20,000 polygon sphere of unit radius inside a 20,000
polygon sphere of radius ε+1 . For each choice of ε , we
performed 100 collision queries on these spheres. For each
query, we gave the spheres random orientations. The smaller
sphere begins at the origin, and grows in increments of 0.001
units until surface separation reaches ε = 4. Fig. 8 shows a
plot, for each bounding volume type, of the number of
bounding volume tests over a range of surface separations, ε .
For the extremely large values of ε , there is a certain mini-
mal depth to which we must descend the bounding volume
hierarchies of the outer sphere in order to bound it away from
the point at its center. However, once this situation is reached,
it provides significant clearance for the object in the middle. In
case of extremely small values of ε , tiny gap brings the leaf
nodes of the bounding volume hierarchies have been desce-
nded to their leaves, and decreasing ε even further cannot
cause more bounding volumes to be tested, because there are
no additional children to be visited. The slope of oriented
bounding box in the log-log plot is measured -1.26, whereas
the slope for new bounding box is almost exactly -1.58.

Another benchmark is diagrammed in Fig. 9. In this experi-
ment, the surface separation was used at ε = 0.01. The sphere
begins at the 3.0−=y , and travels along y -axis until its
center reaches 0.1=y . The sphere is also given random
orientation, and a collision query performed which finds all
the contact pairs between them. In Fig. 10 we show the plot of
the number of triangle contact pairs as function of the y -
coordinate of the sphere. The general trend of the plot is to rise
sharply at approximately 0.0=y . The numbers of contacts for
each bounding volume type are zero, but the distributions of
the number of bounding volume tests are qualitatively differ-
ent, which are shown in Fig. 10. Examination of the parallel
close proximity shows that these two distributions overlap a
little, but the points for oriented bounding box are generally
above the points for our new bounding volume, implying that
our bounding volume are more efficient than oriented
bounding box at pruning the bounding volume test.

2405

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 8 Bounding volume tests vers. surface separation

(a) 2.0−=y (b) 1.0−=y (c) 35.0−=y
Fig. 9 Bounding volume tests for parallel close proximity

Fig. 10 Bounding volume tests vers. position movement

5. CONCLUSIONS

In this paper, we have introduced a new family of bounding
volumes based on sphere and oriented bounding box, and used
them to perform parallel close proximity. This bounding
volume provides varying tightness of fit to the underlying
polygonal model. We also examine some of the trade-offs of
using new bounding volumes by analyzing benchmarks results
comparing the performance of oriented bounding boxes, and
show that new bounding volumes can significantly outperform

the oriented bounding boxes as gap size decreases in the
parallel close proximity. The benchmarks showed that our new
bounding volume is 5 times faster than previously known
method.

REFERENCES
[1] D. Baraff, “Curved Surface and Coherence for non-

penetrating rigid body simulation,” ACM Computer
Graphics 4(24):19-28, 1990.

[2] Gilbert, E. G. Johnson, D. W. and Keerthi, S. S. “A fast
procedure for computing the distance between objects in
three-dimensional space,” IEEE Journal of Robotics
and Automation 4:193-203, 1988.

[3] R Moor, M. Wilhelms, J.. “Collision detection and
response for computer animation,” ACM Computer
Graphics 4(22):289-298, 1988.

[4] M. C. Lin, “Efficient collision detection for Animation
and Robotics,” Ph.D thesis, Department of Electrical
Engineering and Computer Science, University of
California, Berkely, 1993.

[5] N. K Sancheti and S. S. Keerthi, “Computation of
certain measures of proximity between convex poly-
topes: A complexity viewpoint, IEEE Int. Conf. on
Robotics and Automation, pp.2508-2513, 1992.

[6] Cameron, Stephen, “Collision Detection by 4-dimen-
sional intersection Testing,” IEEE Trans. On Robotics
and Automation, 3(6), 1990.

[7] H. Samet, “Spatial Data Structures: Quadtree, Octrees
and Other Hierarchical Methods”, addision Wesley,
1989.

[8] P. M. Hubbard, “Approximating Polyhedra with Spheres
for Time-Critical Collision Detection,” ACM Transac-
tions on Graphics 3(15):179-210, 1996.

[9] S. Quinlam, “Efficient Distance Computation Between
Non-Convex Objects,” Proceedings of International
Conference on Robotics and Automation :3324-3329,
1994.

[10] N. Beckmann, “The R*-Tree : An Efficeint and Robust
Access Method for Points and Rectangles,” Proc. of
SIGMOD Conference on Management of Data : 322-
331, 1990.

[11] M. Ponamgi, D. Manocho, and M. Lin, “Incremental
algorithms for collision detection between general solid
models,” In Proc. of ACM/Siggraph sym. On Solid
Modeling, pp.293-304, 1995.

[12] B. Naylor, J. Amanatides, and W. Thibault, “Merging
BSP trees yield polyhedral modeling results. In Proc. of
ACM Suggraph, pp. 115-124, 1990.

[13] W. Bouma and G. Vanecek, “Collision detection and
analysis in a physically based simulation,” Proc. Euro-
graphics workshop on animation and simulation,
pp.191-203, 1991

[14] A Garica-Alonso, N. Serrano, and J. Flaquer, “Solving
the collision detection problem,” IEEE Computer
graphics and Applications, 13(3):36-43, 1994.

[15] J. Arvo and D. Kirk, “A survey of ray tracing accele-
ration techniques”, In An Introduction to Ray Tracing,
pp.201-262, 1989.

[16] H. Weghorst, G. Hooper, and D. Greenberg, “Improved
computational methods for ray tracing,” ACM Trans-
actions on Graphics, pp.52-69, 1984.

[17] Gottschalk, S. Lin, M. and Manocha, D. “OBB-Tree : A
Hierarchical Structure for Rapid Interfenece Detection,”
International Proceeding of ACM GGRAPH96 :171-180,
1996.

2406

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

