• Title/Summary/Keyword: Primer based on silane

Search Result 6, Processing Time 0.024 seconds

Evaluation of Adhesive Performance of Surface Finishing Material with Primer Based on Silane (실란계 프라이머를 활용한 바닥 마감재 부착성능 평가)

  • Jeong, Gwon-Young;Youn, Da Ae;Jang, Seok-Joon;Kil, Bae-Su;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • The experimental research was conducted to evaluate the adhesive performance of surface finishing material with primer based on silane(primer). For this purpose, concrete specimens with compressive strength of 18, 30, 50 MPa were made and cured in water condition ($20{\pm}2^{\circ}C$) for 28 days. A primer was applied on the age of 28 days and evaluated according to based on the curing age of the surface finishing material. Moreover, the mortar specimen also made and tested as per KS F 4937 for compared with concrete-based test results. Test results indicated that the adhesive strength of specimens with primer exhibit similar than that of specimens without primer. Also, the adhesive performance improved with increasing in curing age and compressive strength. The correlation between compressive and adhesive strength of mortar and concrete specimens showed similar trend. It was noted that there is no significant effects of primer on adhesive performance of surface finishing material, thus use of primer has superior potential for solving durability problem of concrete slab surface.

Shear bond strength of Universal bonding systems to Ni-Cr alloy (니켈-크롬 합금에 대한 다용도 접착 시스템의 전단결합강도)

  • Song, So-Yeon;Son, Byung-Wha;Kim, Jong-Yeob;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the shear bond strength between Ni-Cr alloy and composite resin using universal adhesive systems coMPared to conventional method using metal primers. Materials and methods: For this study, a total of 120 cast commercial Ni-Cr alloy (Vera Bond 2V) disks were embedded in acrylic resin, and their surfaces were smoothed with silicon carbide papers and airborne-particle abrasion. Specimens of each metal were divided into 6 groups based on the combination of metal primers (Metal primer II, Alloy primer, Metal & Zirconia primer, MKZ primer) and universal adhesive systems (Single Bond Universal, All Bond Universal). All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strength testing was performed with a universal testing machine at a cross head speed of 1 m/min. Data (MPa) were analyzed using one-way ANOVA and the post hoc Tukey's multiple comparison test (${\alpha}$=.05). Results: There were significant differences between Single Bond Universal, All Bond Universal, Metal Primer II and Alloy Primer, MKZ Primer, Metal & Zirconia Primer (P<.001). Conclusion: Universal Adhesive system groups indicated high shear bond strength value bonded to Ni-Cr alloy than that of conventional system groups using primers except Metal Primer II. Within the limitations of this study, improvement of universal adhesive systems which can be applied to all types of restorations is recommended especially non-precious metal alloy. More research is needed to evaluate the effect of silane inclusion or exclusion in universal adhesive systems.

Retentive bond strength of fiber-reinforced composite posts cemented with different surface treatments (Fiber reinforced composite post의 표면 처리에 따른 접착 강도)

  • Roh, Hyunsik;Noh, Kwantae;Woo, Yi-Hyung;Pae, Ahran
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.113-120
    • /
    • 2014
  • This study will evaluate the effectiveness of various pretreatments when fiber-reinforced composite (FRC) post is bonded to endodontically treated tooth with resin cement. Materials and methods: Canal shaping of FRC post (DT Light post, Size 3, Bisco Inc., Schaumburg, IL, USA) was performed on endodontically treated premolars at 1.5 cm from CEJ. Samples were divided into 6 groups of surface treatment after conventional washing and drying to the canal. Total of 24 FRC posts were randomly divided into 6 groups of surface treatment as follows: Group C: control - no surface treatment, Group A: airborne-particle abrasion (Cojet sand, 3M ESPE), Group S: silanization (Bis-silane, Bisco Inc.), Group M: universal primer (Monobond-plus primer, Ivoclar Vivadent Inc.), Group AS: silanization after airborne-particle abrasion, Group AM: universal primer treatment after airborne-particle abrasion. Pretreated fiber posts were cemented with resin-based luting material and photo-polymerized and cut to the thickness of 1 mm. Push-out test using a universal testing machine was performed. Bonding failure strength of post dislodgement was measured and the type of bonding failure was classified. Data were analyzed with Kruskal-Wallis test and multiple comparison groups were performed using Tukey HSD value of rank test (${\alpha}=0.05$). Results: Group AS showed significantly highest bonding strength. Group S, group AM, group A, and group M showed lower bonding strength in order. The control group showed the lowest bonding strength. Conclusion: Surface treatment with silane showed to be the most effective of the surface pretreatment methods for cementation of FRC post. Surface treatment with universal primer showed no significant difference compared with no surface treatment group as for bonding strength.

Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

  • Jin, Chung Keun;Lim, Sung Hyung
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.207-212
    • /
    • 2015
  • The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

Bonding to zirconia with resin cements (지르코니아와 레진 시멘트의 결합)

  • Lim, Bum-Soon;Her, Soo-Bok
    • The Journal of the Korean dental association
    • /
    • v.49 no.5
    • /
    • pp.265-278
    • /
    • 2011
  • The introduction of zirconia-based materials to the dental field broadened the design and application limits of, all-ceramic restorations. Most ceramic restorations are adhesively luted to the prepared tooth, however, resin bonding to zirconia components is less reliable than those to other dental ceramic systems. It is important for high retention, prevention of microleakage, and increased fracture resistance, that bonding techniques be improved for zirconia systems. Strong resin bonding relies on micromechanical interlocking and adhesive chemical bonding to the ceramic surface, requiring surface roughening for mechanical bonding and surface activation for chemical adhesion. In many cases, high strength ceramic restorations do not require adhesive bonding to tooth structure and can be placed using conventional cements which rely only on micromechanical retention. However, resin bonding is desirable in some clinical situations. In addition, it is likely that strong chemical adhesion would lead to enhanced long-term fracture and fatigue resistance in the oral environment.

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 1 - Material Development and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 1 - 재료 개발 및 성능 검토)

  • Choi, Jin-Won;Kim, Young-Jun;You, Young-Jun;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • Recent studies on concrete floating structure development focused on connection system of concrete modules. Precast concrete modules are designed to be attached by prestressing in the water, exposing the structure to the loads from water and making the construction difficult. Therefore, a development of bond material became a key issue in successful connection of floating concrete modules. In this study, micro-silica mixed aqua epoxy (MSAE) is developed for the task. Existing primer aqua epoxy, originally used as a bond material for the retrofit of concrete structures using fiber reinforced polymers, is evaluated to find the optimum micro-silica added mix proportion. Micro-silica of 0~4 volume % was mixed in standard mixture of aqua epoxy. Then, the material property tests were performed to study the effect of micro-silica in aqua epoxy by controlling the epoxy silane proportion by 0, ${\pm}5$, ${\pm}10%$. The optimum mix design of MSAE was derived based on the test results. The MSAE was used to connect concrete module specimens with the epoxy thickness variation of 5, 10, and 20mm. Then, 3-point loading test was performed to verify the bond capacity of MSAE. The results show that MSAE improves the bond capacity of concrete module.