• 제목/요약/키워드: Prime rings

검색결과 272건 처리시간 0.029초

SKEW n-DERIVATIONS ON SEMIPRIME RINGS

  • Xu, Xiaowei;Liu, Yang;Zhang, Wei
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1863-1871
    • /
    • 2013
  • For a ring R with an automorphism ${\sigma}$, an n-additive mapping ${\Delta}:R{\times}R{\times}{\cdots}{\times}R{\rightarrow}R$ is called a skew n-derivation with respect to ${\sigma}$ if it is always a ${\sigma}$-derivation of R for each argument. Namely, if n - 1 of the arguments are fixed, then ${\Delta}$ is a ${\sigma}$-derivation on the remaining argument. In this short note, from Bre$\check{s}$ar Theorems, we prove that a skew n-derivation ($n{\geq}3$) on a semiprime ring R must map into the center of R.

CYCLIC CODES OVER THE RING 𝔽p[u, v, w]/〈u2, v2, w2, uv - vu, vw - wv, uw - wu〉

  • Kewat, Pramod Kumar;Kushwaha, Sarika
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.115-137
    • /
    • 2018
  • Let $R_{u{^2},v^2,w^2,p}$ be a finite non chain ring ${\mathbb{F}}_p[u,v,w]{\langle}u^2,\;v^2,\;w^2,\;uv-vu,\;vw-wv,\;uw-wu{\rangle}$, where p is a prime number. This ring is a part of family of Frobenius rings. In this paper, we explore the structures of cyclic codes over the ring $R_{u{^2},v^2,w^2,p}$ of arbitrary length. We obtain a unique set of generators for these codes and also characterize free cyclic codes. We show that Gray images of cyclic codes are 8-quasicyclic binary linear codes of length 8n over ${\mathbb{F}}_p$. We also determine the rank and the Hamming distance for these codes. At last, we have given some examples.

ON THE COHOMOLOGICAL DIMENSION OF FINITELY GENERATED MODULES

  • Bahmanpour, Kamal;Samani, Masoud Seidali
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.311-317
    • /
    • 2018
  • Let (R, m) be a commutative Noetherian local ring and I be an ideal of R. In this paper it is shown that if cd(I, R) = t > 0 and the R-module $Hom_R(R/I,H^t_I(R))$ is finitely generated, then $$t={\sup}\{{\dim}{\widehat{\hat{R}_p}}/Q:p{\in}V(I{\hat{R}}),\;Q{\in}mAss{_{\widehat{\hat{R}_p}}}{\widehat{\hat{R}_p}}\;and\;p{\widehat{\hat{R}_p}}=Rad(I{\wideha{\hat{R}_p}}=Q)\}$$. Moreover, some other results concerning the cohomological dimension of ideals with respect to the rings extension $R{\subset}R[X]$ will be included.

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.

THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS

  • Saraei, Fatemeh Esmaeili Khalil
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.721-734
    • /
    • 2014
  • Let M be a module over a commutative ring R, and let T(M) be its set of torsion elements. The total torsion element graph of M over R is the graph $T({\Gamma}(M))$ with vertices all elements of M, and two distinct vertices m and n are adjacent if and only if $m+n{\in}T(M)$. In this paper, we study the basic properties and possible structures of two (induced) subgraphs $Tor_0({\Gamma}(M))$ and $T_0({\Gamma}(M))$ of $T({\Gamma}(M))$, with vertices $T(M){\backslash}\{0\}$ and $M{\backslash}\{0\}$, respectively. The main purpose of this paper is to extend the definitions and some results given in [6] to a more general total torsion element graph case.

Derivations on Semiprime Rings and Banach Algebras, I

  • Kim, Byung-Do;Lee, Yang-Hi
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.165-182
    • /
    • 1994
  • The aim of this paper is to give the partial answer of Vukman's conjecture [2]. From the partial answer we also generalize a classical result of Posner. We prove the following result: Let R be a prime ring with char$(R){\neq}2,3$, and 5. Suppose there exists a nonzero derivation $D:R{\rightarrow}R$ such that the mapping $x{\longmapsto}$ [[[Dx,x],x],x] is centralizing on R. Then R is commutative. Using this result and some results of Sinclair and Johnson, we generalize Yood's noncom-mutative extension of the Singer-Wermer theorem.

  • PDF

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • 충청수학회지
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

On the Relationship between Zero-sums and Zero-divisors of Semirings

  • Hetzel, Andrew J.;Lufi, Rebeca V. Lewis
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.221-233
    • /
    • 2009
  • In this article, we generalize a well-known result of Hebisch and Weinert that states that a finite semidomain is either zerosumfree or a ring. Specifically, we show that the class of commutative semirings S such that S has nonzero characteristic and every zero-divisor of S is nilpotent can be partitioned into zerosumfree semirings and rings. In addition, we demonstrate that if S is a finite commutative semiring such that the set of zero-divisors of S forms a subtractive ideal of S, then either every zero-sum of S is nilpotent or S must be a ring. An example is given to establish the existence of semirings in this latter category with both nontrivial zero-sums and zero-divisors that are not nilpotent.

NEGACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm

  • Klin-eam, Chakkrid;Phuto, Jirayu
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1385-1422
    • /
    • 2019
  • Let p be an odd prime. The algebraic structure of all negacyclic codes of length $8_{p^s}$ over the finite commutative chain ring ${\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}$ where $u^2=0$ is studied in this paper. Moreover, we classify all negacyclic codes of length $8_{p^s}$ over ${\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}$ into 5 cases, i.e., $p^m{\equiv}1$ (mod 16), $p^m{\equiv}3$, 11 (mod 16), $p^m{\equiv}5$, 13 (mod 16), $p^m{\equiv}7$, 15 (mod 16) and $p^m{\equiv}9$ (mod 16). From that, the structures of dual and some self-dual negacyclic codes and number of codewords of negacyclic codes are obtained.

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

  • Zhao, Wei
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1513-1528
    • /
    • 2021
  • Let R be a commutative ring with prime nilradical Nil(R) and M an R-module. Define the map 𝜙 : R → RNil(R) by ${\phi}(r)=\frac{r}{1}$ for r ∈ R and 𝜓 : M → MNil(R) by ${\psi}(x)=\frac{x}{1}$ for x ∈ M. Then 𝜓(M) is a 𝜙(R)-module. An R-module P is said to be 𝜙-projective if 𝜓(P) is projective as a 𝜙(R)-module. In this paper, 𝜙-exact sequences and 𝜙-projective R-modules are introduced and the rings over which all R-modules are 𝜙-projective are investigated.