• 제목/요약/키워드: Prime rings

검색결과 272건 처리시간 0.024초

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • 대한수학회논문집
    • /
    • 제23권4호
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

  • Hong, Joo-Youn;Lee, Hei-Sook;Noh, Sun-Sook
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.427-436
    • /
    • 2005
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.

한국 서해산 일본재첩, Corbicula japonica Prime의 연령과 성장 (Age and Growth of the Brackish Water Clam, Corbicula japonica Prime on the West Coast of Korea)

  • 류동기;정의영;김영혜
    • 한국패류학회지
    • /
    • 제21권1호
    • /
    • pp.57-64
    • /
    • 2005
  • Samples of Corbicula japonica Prime of Jujin estuary in Gochang were collected from July 2000 to September 2001. Age of C. japonica was determined from the rings on the shell. The relationship between shell length and ring radius in each ring group was expressed as a regression line. Therefore, there is a correspondence in each ring formation. Based on the monthly variation of the marginal index (MI') of the shell, it is assumed that the ring of this species was formed once a year during the period of February and March. The relationship between shell length (SL; mm) and total weight (TW; g) was expressed by the following equation: TW = 1.0942 ${\times}10^{-4}SL^{3.3217}$ ($r^2$ = 0.9905). Shell length (SL) and shell height (SH; mm) was highly correlated with shell height as the following equation: SH = 0.9174 SL - 0.9935 ($r^2$ = 0.9885). The shell length (SL) - shell width (SW) relation was also expressed by the following equation; SW = 0.5925 SL - 1.1706 ($r^2$ = 0.9726). Growth curves for shell length and total weight fitted to the von Bertalanffy's growth curve were expressed as: $$SL_t = 46.4861[1-e^{-0.3383(t+0.0958)}]$$, $$TW_t = 34.54[1-e^{-0.3383(t+0.0958)}]^3.3217$$.

  • PDF

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • 충청수학회지
    • /
    • 제29권4호
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

SKEW CYCLIC CODES OVER Fp + vFp

  • Gao, Jian
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.337-342
    • /
    • 2013
  • In this paper, we study a special class of linear codes, called skew cyclic codes, over the ring $R=F_p+vF_p$, where $p$ is a prime number and $v^2=v$. We investigate the structural properties of skew polynomial ring $R[x,{\theta}]$ and the set $R[x,{\theta}]/(x^n-1)$. Our results show that these codes are equivalent to either cyclic codes or quasi-cyclic codes. Based on this fact, we give the enumeration of distinct skew cyclic codes over R.

ON QUANTUM CODES FROM CYCLIC CODES OVER A CLASS OF NONCHAIN RINGS

  • Sari, Mustafa;Siap, Irfan
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1617-1628
    • /
    • 2016
  • In this paper, we extend the results given in [3] to a nonchain ring $R_p={\mathbb{F}}_p+v{\mathbb{F}}_p+{\cdots}+v^{p-1}{\mathbb{F}}_p$, where $v^p=v$ and p is a prime. We determine the structure of the cyclic codes of arbitrary length over the ring $R_p$ and study the structure of their duals. We classify cyclic codes containing their duals over $R_p$ by giving necessary and sufficient conditions. Further, by taking advantage of the Gray map ${\pi}$ defined in [4], we give the parameters of the quantum codes of length pn over ${\mathbb{F}}_p$ which are obtained from cyclic codes over $R_p$. Finally, we illustrate the results by giving some examples.

SKEW CYCLIC CODES OVER 𝔽p + v𝔽p + v2𝔽p

  • Mousavi, Hamed;Moussavi, Ahmad;Rahimi, Saeed
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1627-1638
    • /
    • 2018
  • In this paper, we study an special type of cyclic codes called skew cyclic codes over the ring ${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$, where p is a prime number. This set of codes are the result of module (or ring) structure of the skew polynomial ring (${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$)[$x;{\theta}$] where $v^3=1$ and ${\theta}$ is an ${\mathbb{F}}_p$-automorphism such that ${\theta}(v)=v^2$. We show that when n is even, these codes are either principal or generated by two elements. The generator and parity check matrix are proposed. Some examples of linear codes with optimum Hamming distance are also provided.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES

  • Kim, Jon-Lark;Lee, Yoonjin
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.915-923
    • /
    • 2015
  • Self-dual codes have been actively studied because of their connections with other mathematical areas including t-designs, invariant theory, group theory, lattices, and modular forms. We presented the building-up construction for self-dual codes over GF(q) with $q{\equiv}1$ (mod 4), and over other certain rings (see [19], [20]). Since then, the existence of the building-up construction for the open case over GF(q) with $q=p^r{\equiv}3$ (mod 4) with an odd prime p satisfying $p{\equiv}3$ (mod 4) with r odd has not been solved. In this paper, we answer it positively by presenting the building-up construction explicitly. As examples, we present new optimal self-dual [16, 8, 7] codes over GF(7) and new self-dual codes over GF(7) with the best known parameters [24, 12, 9].

ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1163-1173
    • /
    • 2014
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c{\in}R$ and $abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.