• Title/Summary/Keyword: Prime ideal

Search Result 285, Processing Time 0.021 seconds

ARTINIANNESS OF LOCAL COHOMOLOGY MODULES

  • Abbasi, Ahmad;Shekalgourabi, Hajar Roshan;Hassanzadeh-lelekaami, Dawood
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.295-304
    • /
    • 2016
  • In this paper we investigate the Artinianness of certain local cohomology modules $H^i_I(N)$ where N is a minimax module over a commutative Noetherian ring R and I is an ideal of R. Also, we characterize the set of attached prime ideals of $H^n_I(N)$, where n is the dimension of N.

A REMARK ON GENERALIZED DERIVATIONS IN RINGS AND ALGEBRAS

  • Rehman, Nadeem Ur
    • The Pure and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.181-191
    • /
    • 2018
  • In the present paper, we investigate the action of generalized derivation G associated with a derivation g in a (semi-) prime ring R satisfying $(G([x,y])-[G(x),y])^n=0$ for all x, $y{\in}I$, a nonzero ideal of R, where n is a fixed positive integer. Moreover, we also examine the above identity in Banach algebras.

CYCLOTOMIC UNITS AND DIVISIBILITY OF THE CLASS NUMBER OF FUNCTION FIELDS

  • Ahn, Jae-Hyun;Jung, Hwan-Yup
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.765-773
    • /
    • 2002
  • Let $textsc{k}$$F_{q}$(T) be a rational function field. Let $\ell$ be a prime number with ($\ell$, q-1) = 1. Let K/$textsc{k}$ be an elmentary abelian $\ell$-extension which is contained in some cyclotomic function field. In this paper, we study the $\ell$-divisibility of ideal class number $h_{K}$ of K by using cyclotomic units.s.s.

ZERO-DIVISOR GRAPHS WITH RESPECT TO PRIMAL AND WEAKLY PRIMAL IDEALS

  • Atani, Shahabaddin Ebrahimi;Darani, Ahamd Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.313-325
    • /
    • 2009
  • We consider zero-divisor graphs with respect to primal, nonprimal, weakly prime and weakly primal ideals of a commutative ring R with non-zero identity. We investigate the interplay between the ringtheoretic properties of R and the graph-theoretic properties of ${\Gamma}_I(R)$ for some ideal I of R. Also we show that the zero-divisor graph with respect to primal ideals commutes by localization.

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.625-633
    • /
    • 2014
  • We study some results which concern the types of Noetherian local rings, and improve slightly the previous result: For a complete unmixed (or quasi-unmixed) Noetherian local ring A, we prove that if either $A_p$ is Cohen-Macaulay, or $r(Ap){\leq}depth$ $A_p+1$ for every prime ideal p in A, then A is Cohen-Macaulay. Also, some analogous results for modules are considered.

SOME REMARKS ON SKEW POLYNOMIAL RINGS OVER REDUCED RINGS

  • Kim, Hong-Kee
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.275-286
    • /
    • 2001
  • In this paper, a skew polynomial ring $R[x;\alpha]$ of a ring R with a monomorphism $\alpha$ are investigated as follows: For a reduced ring R, assume that $\alpha(P){\subseteq}P$ for any minimal prime ideal P in R. Then (i) $R[x;\alpha]$ is a reduced ring, (ii) a ring R is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring) if and only if the skew polynomial ring $R[x;\alpha]$ is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring).

  • PDF

DERIVATIONS ON COMMUTATIVE BANACH ALGEBRAS

  • Lee, Young-Whan;Jun, Kil-Woung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.31-34
    • /
    • 1989
  • In this paper we show that if there is a derivation on a commutative Banach algebra which has a non-nilpotent separating space, then there is a discontinuous derivation on a commutative Banach algebra which has a range in its radical. Also we show that if every prime ideal is closed in a commutative Banach algebra with identity then every derivation on it has a range in its radical.

  • PDF