• 제목/요약/키워드: Prime ideal

검색결과 285건 처리시간 0.02초

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

PRIME IDEALS IN LIPSCHITZ ALGEBRAS OF FINITE DIFFERENTIABLE FUNCTIONS

  • EBADIAN, ALI
    • 호남수학학술지
    • /
    • 제22권1호
    • /
    • pp.21-30
    • /
    • 2000
  • Lipschitz Algebras Lip(X, ${\alpha}$) and lip(X, ${\alpha}$) were first studied by D. R. Sherbert in 1964. B. Pavlovic in 1995 shown that in these algebras, the prime ideals containing a given prime ideal form a chain. In this paper, we show that the above property holds in $Lip^n(X,\;{\alpha})$ and $lip^n(X,\;{\alpha})$, the Lipschitz algebras of finite differentiable functions on a perfect compact place set X.

  • PDF

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • 대한수학회보
    • /
    • 제43권1호
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

STUDY OF QUOTIENT NEAR-RINGS WITH ADDITIVE MAPS

  • Abdelkarim Boua;Abderrahmane Raji;Abdelilah Zerbane
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.353-361
    • /
    • 2024
  • We consider 𝒩 to be a 3-prime field and 𝒫 to be a prime ideal of 𝒩. In this paper, we study the commutativity of the quotient near-ring 𝒩/𝒫 with left multipliers and derivations satisfying certain identities on 𝒫, generalizing some well-known results in the literature. Furthermore, an example is given to illustrate the necessity of our hypotheses.

THE GENERATORS OF COMPLETE INTERSECTION

  • Kang, Oh-Jin;Ko, Hyuong-J.
    • 대한수학회보
    • /
    • 제37권4호
    • /
    • pp.829-841
    • /
    • 2000
  • We classify complete intersections I of grade 3 in a regular local ring (R, M) by the number of minimal generators of a minimal prime ideal P over I. Here P is either a complete intersection or a Gorenstein ideal which is not a compete intersection.

  • PDF

A NOTE ON REAL QUATERNION

  • Hwang, Chul Ju
    • Korean Journal of Mathematics
    • /
    • 제17권3호
    • /
    • pp.245-248
    • /
    • 2009
  • We consider pm-ring with the property such that every prime ideal is contained in only one maximal ideal. Orsatti[4] characterized pm-rings by means of the retraction. Contessa[1] found algebraic condition, by using that direct product of pm-rings is a pm-ring. We show that C(X, H) and C(X, C) are pm-rings and we extend a quasi pm-domain.

  • PDF

WEAKLY (m, n)-CLOSED IDEALS AND (m, n)-VON NEUMANN REGULAR RINGS

  • Anderson, David F.;Badawi, Ayman;Fahid, Brahim
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1031-1043
    • /
    • 2018
  • Let R be a commutative ring with $1{\neq}0$, I a proper ideal of R, and m and n positive integers. In this paper, we define I to be a weakly (m, n)-closed ideal if $0{\neq}x^m\;{\in}I$ for $x{\in}R$ implies $x^n{\in}I$, and R to be an (m, n)-von Neumann regular ring if for every $x{\in}R$, there is an $r{\in}R$ such that $x^mr=x^n$. A number of results concerning weakly(m, n)-closed ideals and (m, n)-von Neumann regular rings are given.