• Title/Summary/Keyword: Primary method

Search Result 4,747, Processing Time 0.032 seconds

Free Vibration of Primary-Secondary Structures with Multiple Connections (다중 지지된 주-부 구조물의 자유 진동)

  • 민경원
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical closed-form expressions describing the fundamental modal properties in the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF

Lessons Learned from Energy Storage System Demonstrations for Primary Frequency Control

  • Yu, Kwang-myung;Choi, In-kyu;Woo, Joo-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.107-114
    • /
    • 2018
  • In recent years, ESS (Energy Storage System) has been widely used in various parts of a power system. Especially, due to its fast response time and high ramp rate, ESS is known to play an important role in regulating grid frequency and providing rotational inertia. As the number of installed and commercially operating ESSs increases, the reliability becomes an important issue. This paper introduces control schemes and presents its test method for grid-connected ESS for primary frequency regulation. The test method allows to verify the control operation in the individual operation mode and state. A validation of the method through actual ESS test in a electrical substation is presented in the case study section.

The Surgical Treatment in Type III Acromioclavicular Dislocation Patients Over 45 Years - Primary Clavicular Lateral End Resection Method vs. Conventional Acromioclavicular Joint Reduction Method - (45세 이상의 제 3형 견봉쇄골 관절 탈구 환자의 수술적 치료 - 일차적 쇄골 외측단 절제 술식과 고식적인 견봉쇄골 관절 정복 술식의 비교 -)

  • Moon Eun-Sun;Bae Bong-Hyun;Choi Jin;Kim Myung-Sun
    • Clinics in Shoulder and Elbow
    • /
    • v.8 no.2
    • /
    • pp.88-96
    • /
    • 2005
  • Purpose: To compare and analyze the outcome of primary clavicular lateral end resection method and conventional acromioclavicular (AC) joint reduction method in type III AC dislocation patients over 45 years. Materials and Methods: This study was performed on selected 24 cases of type III AC dislocation patients, over 45 years of age, operated at our hospital from 1998 to 2002. Group I consist of 12 patients who underwent primary clavicular lateral end resection methods (average age: 54.3 years$(45{\sim}72)$). Group II consist of 7 patients using Bosworth methods and 5 patients using Phemister methods (average age: 54.4 years$(45{\sim}71)$). Clinical outcome was evaluated by Weaver and Dunn method. Radiological results were compared by measuring coracoclavicular distance between normal and injured side. Results: As clinical outcome, good was 10 cases(83%); fair 2(17%) in Group I, and good 6(50%); fair 3(25%); poor 3(25%) in Group II. In contrast, the difference of coracoclavicular distance was not statistically significant between two groups before or after surgery, and last follow up. At the last follow up, there was no special correlation between the difference of coracoclavicular distance and clinical outcome. Conclusion: We considered that primary clavicular lateral end resection may be effective for prevention of arthrosis in AC joint in type III AC dislocation patients over 45 years.

Characterization of Primary Dynamic Resistance in Resistance Spot Welding (저항 점 용접의 1차 동저항 특성에 관한 연구)

  • 조용준;이세헌;신현일;배경민
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 1999
  • The dynamic resistance monitoring in primary circuit is one of the important issues. Because in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. In this study, new dynamic resistance detecting method is proposed as a practical manner of weld quality assurance using instantaneous current and voltage measured at the primary circuit. and also, various patterns of primary dynamic resistance curve are characterized with the macro photograph and the weldability lobe curve. It is found that the primary dynamic resistance patterns are basically similar to those of the secondary, but there is evident advantage such as no extra devices are needed to obtain the quality information and eventually real time feedback control will be possible.

  • PDF

Planning and Preparing for Portfolio Assessment in Elementary Science Classes (초등 과학 포트폴리오 평가 도구 개발 연구)

  • 김찬종;윤선아;최승희;홍은석;김명수;여원미;김미숙;김순영;이주슬
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • Portfolio assessment provides many opportunities to foster children's creativity and to increase their responsibility for learning. few research study has been conducted in this area, and this assessment method has scarcely been administered in primary science class, Proper and effective use of portfolio assessment in our primary science class requires basic research on how to design and administer the method. Based on the earlier study on typical structures and components of portfolio assessment, the assessment instrument was developed on various primary science topics, The development team was consisted of one science education specialist and nine pre-service elementary school teachers. It takes ten months to develop instruments for 27 class hours. The development process was reciprocal in that development and revision cycle was repeated more than 7 times. The portfolio assessment instruments consist of instructional objectives, developers' evidence for the objectives, and assessment criteria. Adopting a new way of assessment into science class inevitably causes lots of confusions to teachers and children. The absence of basic research studies must be a critical barrier for successful administration of a new assessment method such as portfolio assessment. further research is required in the preparation and administration of portfolio assessment in our primary science classroom.

  • PDF

Korea Institute of Child Care and Education (유초연계의 중요성에 대한 초등 1학년 교사의 인식이 학습자중심 수업활동을 매개로 아동의 학교적응에 미치는 영향)

  • Lee, Wan jeong;Kim, Mee na
    • Korean Journal of Childcare and Education
    • /
    • v.15 no.4
    • /
    • pp.21-36
    • /
    • 2019
  • Objective: Using data from the Panel Study on Korean Children, this study investigated the influence of teacher'thoughts about the transition from ECEC to primary school in relation to learner-centered teaching methods and children's school adjustment. Methods: We analyzed the longitudinal data of 658 seven-year-olds from the 8th and 9th waves of the panel study of Korean children collected by the Korea Institute of Child Care and Education in 2015 and 2016. The main analysis method was Structural Equation Modeling(SEM). Results: First, theachers' thoughts about the transition from ECEC to primary school was noteworthy. Second, the more concern a theacher' had about transition, the higher their learner-centered teaching method. Third, teacher' concern about transition influenced children's school adjustment. Fourth, a teacher's learner-centered teaching method mediated concern about children's transition and school adjustment in the first year and the second year. Conclusion/Implications: According to the results of this study, 1st grade teachers' concern about the transition from ECEC to primary school has been found to be predictors of children's school adjustment.

Geostatistical algorithm for evaluation of primary and secondary roughness

  • Nasab, Hojat;Karimi-Nasab, Saeed;Jalalifar, Hossein
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.359-370
    • /
    • 2021
  • Joint roughness is combination of primary and secondary roughness. Ordinarily primary roughness is a geostatistical part of a joint surface that has a periodic nature but secondary roughness or unevenness is a statistical part of that which have a random nature. Using roughness generating algorithms is a useful method for evaluation of joint roughness. In this paper after determining geostatistical parameters of the joint profile, were presented two roughness generating algorithms using Mount-Carlo method for evaluation of primary (GJRGAP) and secondary (GJRGAS) roughness. These based on geostatistical parameters (range and sill) and statistical parameters (standard deviation of asperities height, SDH, and standard deviation of asperities angle, SDA) for generation two-dimensional joint roughness profiles. In this study different geostatistical regions were defined depending on the range and SDH. As SDH increases, the height of the generated asperities increases and asperities become sharper and at a specific range (a specific curve) relation between SDH and SDA is linear. As the range in GJRGAP becomes larger (the base of the asperities) the shape of asperities becomes flatter. The results illustrate that joint profiles have larger SDA with increase of SDH and decrease of range. Consequencely increase of SDA leads to joint roughness parameters such Z2, Z3 and RP increases. The results showed that secondary roughness or unevenness has a great influence on roughness values. In general, it can be concluded that the shape and size of asperities are appropriate parameters to approach the field scale from the laboratory scale.

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

An Experimental Study of the Trust Vector Control Using Counterflow Concept

  • C. M. Lim;Kim, H. D.;Lee, K. H.;T. Setoguchi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.192-197
    • /
    • 2004
  • Recently, fluidic thrust vectoring methods have been preferably employed to control the movement of propulsive systems due to relatively simpler design and lower cost than mechanical thrust vectoring methods. For An application of the thrust vectoring to flight bodies, it is necessary to understand very complicated exhaust flows which are often subject to shock waves and boundary layer separation. But researches for the thrust vector control using counterflow have been few. In the present study, experiments have been performed to investigate the characteristics of supersonic jets controlled by a thrust vectoring method using counterflow. The primary jet is expanded through a two-dimensional primary nozzle shrouded by collars, and is deflected by the suction of the air near nozzle into an upper slot placed between the primary nozzle and the upper collar. A shadowgraph method is used to visualize the supersonic jet flowfields. Primary nozzle pressure ratios and suction nozzle pressure ratios are varied from 3.0 to 5.0, and from 0.2 to 1.0 respectively. The present experimental results showed that, for a given primary nozzle pressure ratio, a decrease in the suction nozzle pressure ratio produced an increased thrust vector angle. As the suction nozzle pressure ratios were increased and decreased, the hysteresis of the thrust vectoring was observed through the wall pressure distributions

  • PDF

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF