• 제목/요약/키워드: Primary decomposition

검색결과 173건 처리시간 0.028초

PTA법에 의한 스텔라이트 12합금 육성층의 미세조직 및 경도에 미치는 시효처리의 영향 (The effect of aging on the Microstructure and Hardness of Stellite 12 alloy overlayer by PTA process)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.68-75
    • /
    • 2002
  • Stellite 12 alloy-powders were overlaid on 410 stainless steel valve seat by plasma transferred arc(PTA)process. Variation of microstructure and hardness of overlaid deposit with aging time at $750^{\circ}C$ was investigated. The deposit showed hypoeutectic microstructure, which was consisting of primary cobalt dendrite and networked $M_{7}C_{3}$type eutectic carbides. After aging new M_{23}C_{6}$ carbide was formed by the partial decomposition of $M_7C_3$ type eutectic carbides and finely dispersed $M_{23}C_6$ type carbides were also precipitated in the matrix. Hardness of the deposit was increased with increase of aging time at $750^{\circ}C$ and showed maximum value at 35hours. After showing maximum value, it was fallen down again at 70hours because of overaging. The increase of hardness in aging is ascribed to the formation of new stable $M_{23}C_6$ type carbide by the partial decomposition of $M_7C_3$ type eutectic carbides and also precipitation of finely dispersed $M_{23}C_6$ carbides in matrix.

Synthesis and Structures of Two Lanthanide Complexes Containing a Mixed Ligand System: [Ln(Phen)2(L)3(HL)]·H2O [Ln = La, Ce: Phen = Phenanthroline: HL = Salicylic Acid]

  • Iravani, Effat;Nami, Navabeh;Nabizadeh, Fatemeh;Bayani, Elham;Neumuller, Bernhard
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3420-3424
    • /
    • 2013
  • The reaction of $LnCl_3{\cdot}7H_2O$ [Ln = La (1), Ce (2)] with salicylic acid (HL) and 1,10-phenanthroline (Phen) at $20^{\circ}C$ in $H_2O$/ethanol gave after work-up and recrystallization two novel lanthanide complexes with general formula $[Ln(Phen)_2(L)_3(HL)]{\cdot}H_2O$. Compounds 1 and 2 were characterized by IR and UV-Vis spectroscopy, TGA, CHN as well as by X-ray analysis. According to these results, compounds 1 and 2 are isostructural and contain $Ln^{3+}$ ions with coordination number nine. Complexes 1 and 2 consist of two Phen, one neutral HL and three L anions (two L anions act as monodentate ligands and the third one is chelating to $Ln^{3+}$). Thermal decomposition led to primary loss of the Phen molecules. Then HL molecules and finally L moieties left the material to give $Ln_2O_3$.

포장용지류에서의 중금속 분석을 위한 산분해 전처리 방법의 탐색 (Considerations of Acid Decomposition System for the Analysis of Heavy Metals in Packaging-grade Paper)

  • 이태주;고승태;김형진
    • 펄프종이기술
    • /
    • 제43권1호
    • /
    • pp.65-73
    • /
    • 2011
  • The fibrous raw materials in packaging-grade paper production in Korea were mainly obtained from waste paper. The use of recycled paper has both positive and negative impacts in papermaking process. The primary positive impacts are the environmental protection and manufacturing cost reduction, and the negative impacts are the quality reduction in paper quality and the accumulation of heavy metals and other pollutants in wet- and dry-end process. This study was carried out to consider the optimum acid decomposition system with the highest recovery rate for the analysis of heavy metals in packaging-grade paper. The open digestion system using Kjeldahl apparatus and the closed digestion system using microwave oven for decomposing the organic materials in paper were compared. In both open and closed digestion method, the combination of nitric acid, hydrochloric acid and hydrogen peroxide showed higher recovery rate than using only nitric acid alone because the presence of Cl- ions in hydrochloric acid stabilizes ligand formation with metal ions. KOCC was observed to have the highest heavy metal content among the recycled paper samples. The heavy metal contents decomposed with the closed digestion system were relatively higher than with open digestion system.

Measuring and Decomposing Socioeconomic Inequality in Catastrophic Healthcare Expenditures in Iran

  • Rezaei, Satar;Hajizadeh, Mohammad
    • Journal of Preventive Medicine and Public Health
    • /
    • 제52권4호
    • /
    • pp.214-223
    • /
    • 2019
  • Objectives: Equity in financial protection against healthcare expenditures is one the primary functions of health systems worldwide. This study aimed to quantify socioeconomic inequality in facing catastrophic healthcare expenditures (CHE) and to identify the main factors contributing to socioeconomic inequality in CHE in Iran. Methods: A total of 37 860 households were drawn from the Households Income and Expenditure Survey, conducted by the Statistical Center of Iran in 2017. The prevalence of CHE was measured using a cut-off of spending at least 40% of the capacity to pay on healthcare services. The concentration curve and concentration index (C) were used to illustrate and measure the extent of socioeconomic inequality in CHE among Iranian households. The C was decomposed to identify the main factors explaining the observed socioeconomic inequality in CHE in Iran. Results: The prevalence of CHE among Iranian households in 2017 was 5.26% (95% confidence interval [CI], 5.04 to 5.49). The value of C was -0.17 (95% CI, -0.19 to -0.13), suggesting that CHE was mainly concentrated among socioeconomically disadvantaged households in Iran. The decomposition analysis highlighted the household wealth index as explaining 71.7% of the concentration of CHE among the poor in Iran. Conclusions: This study revealed that CHE is disproportionately concentrated among poor households in Iran. Health policies to reduce socioeconomic inequality in facing CHE in Iran should focus on socioeconomically disadvantaged households.

DBD 반응기에서 플라즈마 방전형태에 따른 PFCs 가스의 분해 특성 (Decomposition Characteristics of PFCs for Various Plasma Discharge Methods in Dielectric Barrier Discharge)

  • 김관태;김용호;차민석;송영훈;김석준;류정인
    • 한국대기환경학회지
    • /
    • 제20권5호
    • /
    • pp.625-632
    • /
    • 2004
  • Perfluorocompounds ($PFC_s$), such as tetrafluoromethane ($CF_4$) and hexafluoroethane ($C_2F_6$), have been widely used as plasma etching and chemical vapor deposition (CVD) gases for semiconductor manufacturing processes. Since these $PFC_s$ are known to cause a greenhouse effect intensively, there has been a growing interest in reducing $PFC_s$ emissions. Among various $CF_4$ decomposing techniques, a dielectric barrier discharge (DBD) is considered as one of a promising candidate because it has been successfully used for generating ozone ($O_3$) and decomposing nitrogen oxide (NO). Firstly, optimal concentration of oxygen for $CF_4$ decomposition was found to figure out how many primary and secondary reactions are associated with DBD process. Secondary, to find effective discharge method for $CF_4$ decomposition, a streamer and a glow mode in DBD are experimentally compared, which includes (i) coaxialcylinder DBD, (ii) DBD reactor packed with glass beads. and (iii) a glow mode operation with a helium gas. The test results showed that optimal concentration of oxygen was ranged 500 ppm~1% for treating 500 ppm of $CF_4$ and helium glow discharge was the most efficient one to decompose $CF_4$.

Combustion and thermal decomposition characteristics of brown coal and biomass

  • 김희준;;;;김래현
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.373-377
    • /
    • 2012
  • Among the fossil fuels, the brown coal is a great deal of resources. However, it is hardly used due to the high moisture content and low calorific value. It has both the week points such as spontaneous combustion and high volatile content and the strong points such as the low-sulfur and low ash content. If we overcome these week points, the using amount of brown coal would be increased. Also, it is well known that biomass is one of the important primary renewable energy sources because of carbon neutral energy. Furthermore, the utilization of biomass has been more and more concerned with the depletion of fossil fuel sources as well as the global warming issues. Combustion and thermal decomposition of biomass is one of the more promising techniques among all alternatives proposed for the production of energy from biomass. In this study, combustion of brown coals and mushroom waste was done. Mass change of samples and emission of hydrocarbon components were measured. As the results, we obtained combustion rate constant. Also activation energy was calculated in char combustion step. Hydrocarbon components were more generated in low oxygen concentration than high. Emission amount of hydrocarbon components in mushroom waste was significantly increased comparing to brown coal.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

중국의 토지 공급 정책이 부동산 시장에 미치는 영향 (The Impact of Chinese Land Supply Policies on the Real Estate Market)

  • 유의박;이연재;신승우
    • 아태비즈니스연구
    • /
    • 제15권1호
    • /
    • pp.225-237
    • /
    • 2024
  • Purpose - This study aims to explore the relationship between housing and land prices, with a specific emphasis on the impact of government policies on these factors such as land supply quantity and the ratio of residential land to total land supplied. The goal is to identify the most effective government intervention strategies for controlling both housing and land prices. Design/methodology/approach - Data from 70 primary and medium-sized cities in China spanning from 2003 to 2017 are utilized in this research. The analysis employs a panel vector autoregressive (PVAR) model, with a primary focus on examining the relationships among housing prices, land prices, and government intervention policies. Findings - Housing and land prices are influenced by various factors. Through impulse response analysis and variance decomposition, it is observed that both housing and land prices are predominantly influenced by their internal dynamics, with comparatively weaker effects attributed to policy interventions. Research implications or Originality - By investigating the impact of government policies on housing and land prices, This study establishes a foundation for effective price control measures. Our study advocates for a comprehensive examination of China's land supply mechanism to enhance understanding of the pathways through which government policies influence the markets.

EEMD법을 이용한 저속 선회베어링 상태감시 (Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method)

  • 와휴 캐서렌드라;박진희;코사시;최병근
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.131-143
    • /
    • 2013
  • 대부분의 철강산업 기계 등에 설치되어 사용되는 선회베어링은 교체를 위한 정확한 정비계획이 필요하기 때문에 저속회전체의 선회베어링에 대한 진동 상태감시가 매우 중요하게 되었다. 지금까지 음향방출(AE)법이 저속베어링의 상태감시에 가장 많이 사용되는 기술이고 몇몇의 경우는 진동을 사용한다. 음향방출을 사용하는 일반적인 이유는 저속에서 구름요소와 결함위치 사이의 충격에 의하여 발생되는 신호가 약하고 때때로 노이즈나 다른 간섭 주파수에 결함신호가 묻혀 검출이 어렵기 때문이다. 따라서 쉽게 특정 결함에 대한 결함주파수의 동정을 위하여 몇몇 연구자들은 충격에너지를 증가시키기 위하여 인위적으로 미리 정해진 길이, 넓이와 깊이의 결함을 베어링의 내, 외부 레이스에 인가하기도 한다. 이 논문에서는 15 rpm에서 운전하는 저속 선회베어링의 진동신호에 EMD와 EEMD를 적용하였고 논문에서 사용한 진동결함 신호는 국내 산업체에서 공급받은 것이다. 이 논문에서는 베어링결함 주파수 동정을 위하여 EEMD를 사용하여 결함신호의 FFT처리 결과를 입증하고 설명하였다.