• Title/Summary/Keyword: Primary creep

Search Result 77, Processing Time 0.02 seconds

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header - (Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 -)

  • Baek, Seung-Se;Lee, Dong-Hwan;Ha, Jeong-Su;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Studies on the Acoustical Characteristics of Violin Bridges and SDM Simulation (바이올린 브릿지의 음향적 특성 및 SDM 시뮬레이션에 관한 연구)

  • 정우양
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • Violin bridge blank cut from maple wood with good quality has typical pattern of the radial direction in the side edge with minimal dispersion. This experimental study was designed and carried out to examine the effect of the physical and macroscopical characteristics on the compressive creep of violin bridge blank which had been imported from European manufacturer. This research arose from the idea that the maple solid wood with heterogeneous wood density and ray direction in the side edge would have uneven rheological property of violin bridge blank which is supposed to be pressed by the tension of strings. Experimentally, the compressive creep of bridge blank became smaller with the higher density of imported maple wood and showed clear density-dependence for the duration of load under the string tension of 5 kgf. Every bridge blank showed the behavior of primary creep stage(stress stabilization) having logarithmic regression creep curve with high correlation coefficient under the designed stress level. Even though the relationship between compressive creep and ray direction on the side edge of bridge was not so clear contrary to expectation, we could conclude that wood density and ray direction should be the quality decisive factors affecting the acoustical characteristics and performance of the bridge, the core member of violin-family bow instruments.

  • PDF

Effect of Cold-Rolling Direction on Creep Behaviors in Zr-1.1Nb-0.05Cu Alloy (냉간 압연 방향에 따른 Zr-1.1Nb-0.05Cu 합금의 크리프 거동)

  • Seol, Yong-Nam;Jung, Yang-Il;Choi, Byoung-Kwon;Park, Jeong-Yong;Hong, Sun-Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.355-361
    • /
    • 2011
  • Creep behaviors of the Zr-1.Nb-0.5Cu (HANA-6) alloy strips with different orientations were investigated. Anisotropy was observed in the samples depending on their physical orientations due to the formation of texture in their microstructures. The creep strain rate was increased as the test stress and temperature increased. The rate was higher along the rolling-direction than in the transverse-direction irrespective of annealing conditions. However, the samples with $45^{\circ}$ direction showed different behaviors depending on the annealing temperature. When strips were finally annealed at $600^{\circ}C$ for 10 min, the primary creep rate of the $45^{\circ}$ strip was the highest among the various orientations although the saturated creep rate was the lowest. In the case of final annealing at $660^{\circ}C$ for 4 h, the highest creep rate occurred throughout the creep test in the $45^{\circ}$ strip. It is considered that the fraction of (100) planes along the direction of creep deformation affect the creep rates.

Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay (포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동)

  • 강우묵;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF

Creep of Plate Anchors Embedded in Bentonite (Bentonite에 근입된 앵커의 Creep 특성)

  • Shin, B.W.;Lee, J.D.;Shin, J.H.;Lee, B.J.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 1995
  • Anchors find their use in providing tie-back resistance for submerged footings, transmission towers, tunnels and ocean structures. Laboratory model teats were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated bentonite. The tests have been conducted with the anchor at two different moisture contents. Based an the model test results, empirical relationships between the net load, rate of strain, and time have been developed. Test results are as follows. 1) In creep tests for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time. 2) Displacement increased with the increase of the sustain load and embedded ratio in soil. 3) If the load is less than or equal to 75% of the short-term ultimate uplift capacity, a complete pullout does not occur due to creep.

  • PDF

The Evaluation of Materials Degradation in Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 열화도 평가)

  • Hyeon, Yang-Gi;Lee, Jae-Do
    • 연구논문집
    • /
    • s.31
    • /
    • pp.157-163
    • /
    • 2001
  • Evolution of microstructure due to service exposure to high temperature has a strong effect performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarcening of $M_23C_6$-type carbides is the primary cause of degradation of mechanical properties such as creep resistance, tensile strength and toughness. Creep tests have been carried out on pre-aging mod. 9Cr-1Mo steels to examine the effect of pre-aging and stress on the creep strength. Based on the results, a nondestructive procedure, where electrochemical technique that quantitatively detect laves phases and $M_23C_6$-type carbides in a material is used, has been proposed to evaluate a residual creep life of mod. 9Cr-1Mo steels.

  • PDF

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃ (950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰)

  • Lee, Gyeong-Geun;Jung, Su-Jin;Kim, Dae-Jong;Kim, Woo-Gon;Park, Ji-Yeon;Kim, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.596-603
    • /
    • 2011
  • The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

Effects of Microstructure on the Creep Properties of the Lead-free Sn-based Solders (미세조직이 Sn계 무연솔더의 크리프 특성에 미치는 영향)

  • Yoo, Jin;Lee, Kyu-O;Joo, Dae-Kwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • The Sn-based lead-free solders with varying microstructure were prepared by changing the cooling rate from the melt. Bulky as-cast SnAg, SnAgCu, and SnCu, alloys were cold rolled and thermally stabilized before the creep tests so that there would be very small amount of microstructural change during creep (TS), and thin specimens were water quenched from the melt (WQ) to simulate microstructures of the as-reflowed solders in flip chips. Cooling rates of the WQ specimens were 140∼150 K/sec, and the resultant $\beta-Sn$ globule size was 5∼10 times smaller than that of the TS specimens. Subsequent creep tests showed that the minimum strain rate of TS specimens was about $10_2$ times higher than that of the WQ specimens. Fractographic analyses showed that creep rupture of the TS-SnAgCu specimens occurred by the nucleation of voids on the $Ag_3Sn$ Sn or $Cu_6Sn_5$ particles in the matrix, their subsequent growth by the power-law creep, and inter-linkage of microcracks to form macrocracks which led to the fast failure. On the other hand, no creep voids were found in the WQ specimens due to the mode III shear rupture coming from the thin specimens geometry.

  • PDF