• Title/Summary/Keyword: Primary compression index

Search Result 29, Processing Time 0.029 seconds

A Study on the Beginning Point of Secondary Compression in Consolidation Theory (압밀이론에서 2차 압축 적용 시점에 관한 연구)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.51-63
    • /
    • 2023
  • To improve the problem that the settlement curve of the consolidation theory of Terzaghi does not match well with the actual settlement curve, we included a secondary compression settlement and analyzed it by varying the beginning point and then obtained the following results. The current methods of calculating the compression index from the  log𝜎 curve and the coefficient of consolidation from the time-dependent settlement curve for each consolidation pressure proved that the final settlement amount will be consistent after a long time, but the actual settlement amount will always be smaller than the predicted settlement amount during the settlement progress stage. The consolidation factors estimated by the curve fitting with the condition that the secondary compression begins in the second half of the primary compression showed similar values to the consolidation factors estimated by the curve fitting for the primary compression only, and the settlement curves were in better agreement throughout the compression. It showed different values, showing low validity. It can be inferred that secondary compression acts from the point when a significant portion of the excess pore water pressure is dissipated, and the loading stress begins to have more influence on the skeletal structure of the soil. Analysis results show that secondary compression begins at the range of 91 % to 98 % on the average degree of primary consolidation.

The Study of Secondary Compression Index on Soft Clays (점성토의 2차압축지수에 관한 연구)

  • 윤일형;서정석;도헌영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.537-544
    • /
    • 2002
  • Deformations of clays continue beyond the end of primary consolidation: this is secondary consolidation. Mesri(1973) have shown that C $\_$a/' is related to the natural water content W$\_$n/. For clays, C $\_$a/' is approximately equal to 0.01 W $\_$n/. And the ratio C $\_$ae// C $\_$c/ is approximately equal to 0.04. In this study, coefficient of secondary compression was analyzed by the consolidation tests datas in the 3 sites. In conclusion, coefficient of secondary compression was similar to Mesri's suggestions.

  • PDF

A study on the characteristics of primary and secondary settlement for a peat soil in Sri-Lanka (Sri-Lanka내 Peat Soil의 일차압밀 및 이차압축 침하특성에 관한 연구)

  • Jin, Sung-Ki;Lee, Jae-Weon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.235-242
    • /
    • 2004
  • For this study, a Peliyagoda area located on a route was selected among many sections of a CKE(Colombo to Katunayake Expressway) route in Sri-Lanka. Its subground consists of a very weak and thick peat soil named amorphous or fibrous peat. All of data, obtained in the design process of soft ground treatment were analyzed to evaluate the settlement characteristics resulted from an embankment load and to present reasonable methods for estimation of secondary compression settlement. For these purposes, soil parameters were used obtainedby field and laboratory tests the settlement analyses were conducted base on the field monitoring results within 20 months. In addition, Reasonable methods were studied to estimate primary consolidation and secondary compression settlement.

  • PDF

A Case-study of Compression Index Prediction on Very Soft Clay (초연약 점토지반 압축지수 추정에 관한 연구)

  • Kim, Byeong-Kyu;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.13-18
    • /
    • 2015
  • Considering dredged ground is consolidated more than one meter, Compression index prediction is very important. But, UD-sampling and consolidation test are impossible because of high moisture content and weak shear strength. This paper demonstrates the compression index relation, $C_{c(d)}=F(e_d,C_c)$, between in-situ and dredged clay using N. Keith Tovey's Omega point and soil physical properties. Good relationship is confirmed between proposed formula and measured primary consolidation result on dredged ground in The Republic of Korea.

Geotechnical characteristics and consolidation properties of Tianjin marine clay

  • Lei, Huayang;Feng, Shuangxi;Jiang, Yan
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.125-140
    • /
    • 2018
  • Tianjin, which is located on the west shore of the Bohai Sea, is part of China's Circum-Bohai-Sea Region, where very weak clay is deposited. From the 1970s to the early $21^{st}$ century, Tianjin marine clay deposits have been the subject of numerous geotechnical investigations. Because of these deposits' geological complexity, great depositional thickness, high water content, large void ratio, excessive settlement, and low shear strength, the geotechnical properties of Tianjin marine clay need to be summarized and evaluated based on various in situ and laboratory tests so that Tianjin can safely and economically sustain more infrastructure in the coming decades. In this study, the properties of Tianjin marine clay, especially its consolidation properties, are summarized, evaluated and discussed. The focus is on establishing correlations between the geotechnical property indexes and mechanical parameters of Tianjin marine clay. These correlations include the correlations between the water content and the void ratio, the depth and the undrained shear strength, the liquid limit and the compression index, the tip resistance and the constrained modulus, the plasticity index and the ratio of undrained shear strength and the preconsolidation pressure. In addition, the primary consolidation properties of Tianjin marine clay, such as the intrinsic compression line (ICL), sedimentation compression line (SCL), compression index, $C_c$, coefficient of consolidation, $C_v$, and hydraulic conductivity change index, $C_{kv}$, are evaluated and discussed. A secondary consolidation property, i.e., the secondary compression index, $C_a$, is also investigated, and the results show that the ratio of $C_a/C_c$ for Tianjin marine clay can be used to calculate $C_a$ in secondary consolidation settlement predictions.

Consolidation settlement of soil foundations containing organic matters subjected to embankment load

  • Feng, Ruiling;Wang, Liyang;Wei, Kang;Zhao, Jiacheng
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 2021
  • Peatland is distributed in China widely, and organic matters in soil frequently induce problems in the construction and maintenance of highway engineering due to the high permeability and compressibility. In this paper, a selected site of Dali-Lijiang expressway was surveyed in China. A numerical model was built to predict the settlement of the foundation of the selected section employing the soft soil creep (SSC) model in PLAXIS 8.2. The model was subsequently verified by the result of field observance. Consequently, the parameters of 17 types of soils from different regions in China with organic contents varying from 1.1-74.9% were assigned to the numerical model to study the settlement characteristics. The calculated results showed that the duration of primary consolidation and proportion of primary settlement in the total settlement decreased with increasing organic content. Two empirical equations, for total consolidation settlement and secondary settlement, were proposed using multiple linear regression based on the calculated results from the numerical models. The analysis results of the significances of certain soil parameters demonstrated that the natural compression index, secondary compression index, cohesion and friction angle have significant linear relevance with both the total settlement and secondary settlement, while the initial coefficient of permeability exerts significant influence on the secondary settlement only.

다단형 도시폐기물 매립지의 침하모델 계수 분석

  • 김용인;손영중;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.192-197
    • /
    • 2004
  • 폐기물 매립층의 침하는 매립 폐기물의 조성특성의 영향으로 인하여 침하특성이 일반 흙의 토질역학적 거동과 다르게 나타난다. 폐기물의 침하특성은 매립당시 나타나는 폐기물 하중에 의한 침하특성과 향후 장기적으로 유발되는 생화학적 침하특성을 구분하여 규명하는 것이 필요하다. 본 연구에서는 국내 대표적 매립지 폐기물 침하에 대한 계측자료를 바탕으로 역학적 일차 압축침하와 생화학적 이차 압축침하에 대한 침하특성계수를 산정하였다. 또한 Sower(1973)의 매립지 폐기물에 대한 침하량 산정식을 응용하여 다단형 매립지 폐기물에 적용할 수 있는 침하량 산정식을 구성하였다.

  • PDF

$C_a/C_c$ for Marine Clay at Southern Part of Korea (남해안 해성점토의 $C_a/C_c$)

  • 김규선;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.373-380
    • /
    • 1999
  • Consolidation settlements of soft clay are often large and potentially damaging to the structures. Currently, large-scale construction projects for airport and harbor etc. are in progress in Korea and many of these structures will be constructed on thick and soft clay layers. For this kind of ground condition, evaluation of consolidation settlement is required at every design and construction stages, and the magnitude of secondary compression appears to be larger than expected. Generally, the magnitude of secondary compression is evaluated by laboratory and in-situ consolidation tests or by empirical $C_{a/}$ $C_{c}$, relationship. The use of empirical value $C_{a/}$ $C_{c}$ may be economical, fast and powerful tool in estimating secondary consolidation settlement. However, the databases of the $C_{a/}$ $C_{c}$, for typical soft clays in Korea are insufficient. The purpose of this study is to investigate the relationship of $C_{a/}$ $C_{c}$ on marine clay near the southern sea in Korea. A series of incremental loading consolidation tests with measurement of pore water pressure were performed. It was found that the $C_{a/}$ $C_{c}$ of undisturbed marine clay is 0.0397. This value is similar to that proposed by Mesri and Castro(1987) on inorganic clay and silt. and silt. and silt.

  • PDF

A Study on the Relaxion of Secondary Compression Settlement using Preloading Method (프리로딩에 의한 2차 압밀침하량 감소에 관한 연구)

  • Huh, Ik-Chang;Im, Jong-Chul;Chang, Ji-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1086-1093
    • /
    • 2005
  • In soft ground, consolidation settlement is mainly consider. The primary consolidation settlement which is the time when the excess pore water pressure is completely dispersed and the secondary consolidation settlement which follows. Recently as the depth of consolidation layer increases the consideration of not only the primary consolidation settlement but also of the secondary consolidation settlement becomes a very important element. But up to the present there were only a few in-depth study of the secondary consolidation settlement performed. At present there are a lot of methods available when it comes to the improvement of soft soil. In this study, Preloading Method which is the most commonly used soft soil improvement method locally was used in order to investigate the method for the reduction of secondary consolidation settlement. The objective of this study is to determine the amount of preloading required to reduce secondary consolidation settlement and to determine whether secondary consolidation settlement using standard consolidation test.

  • PDF