• Title/Summary/Keyword: Primary Si

Search Result 528, Processing Time 0.023 seconds

Secondary electron emission characteristics of a thermally grown $SiO_2$ thin layer (건식 열산화로 성장시킨 $SiO_2$박막의 이차전자 방출 특성)

  • 정태원;유세기;이정희;진성환;허정나;이휘건;전동렬;김종민
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • The secondary election emission (SEE) yields for the thermally grown $SiO_2$ thin layers were measured by varying the thickness of the $SiO_2$ layer and the primary current. $SiO_2$ thin layers were thermally grown in a furnace at $930^{\circ}C$, whose thickness varied to be 5.8 nm, 19 nm, 43 nm, 79 nm, 95 nm, and 114 nm. When the $SiO_2$ layers were thinner than 43 nm, it was found that SEE curves followed the universal curve. However, for samples with a $SiO_2$ layer thicker than 79 nm, the SEE curves exhibited two maxima and the values of SEE yields were reduced. Additionally, as the current of primary electrons increased, the SEE yields were reduced. In this experiment, the maximum value of the SEE yield for $SiO_2$ layers was obtained to be 3.35 when the thickness of $SiO_2$ layer was 19 nm, with the primary electron energy 300 eV and the primary electron current 0.97 $\mu\textrm{A}$. The penetration and escape depth of an electron in the $SiO_2$ layers were calculated at the primary electron energy for the maximum value of the SEE yield and from these depths, it was calculated that the thickness of the $SiO_2$layer.

  • PDF

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

The Effect of Fluid Flow on the Primary Particle of Al-7wt%Si Alloy in Electromagnetic Stirring (전자교반시 Al-7wt%Si합금의 초정입자에 미치는 유동의 영향)

  • Lim, Sung-Chul;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.565-575
    • /
    • 1996
  • In this study, to gain the semi-solid alloy we employed the electromagnetic rotation by a induction motor of 3-phases and 2-poles for Al-7wt%Si alloy and observed the size of primary solid particle, distribution state of primary solid particle, the degree of sphericity, and fraction of primary solid for the evaluation of its results. The size of primary solid particle increases from $98{\mu}m$ to $118{\mu}m$ as solid fraction increases from 0.2 to 0.5. The degree of sphericity increased as the solid fraction increased. Solid particles obtained from the microstructures of isothermally held sample were coarsened and the degree of sphericity was enhanced as isothermal holding time increased. However, when the sample was stirred for more than 40min, solid particles merged together and liquid phase was entrapped within the cluster of solid particles. The size of primary solid particle was not changed significantly with the variation of input voltages by 160V over which solid particles began to merge together to be a large cluster of about $170{\mu}m$ at 180V. The standard deviation and the degree of sphericity were not changed significantly with the variation of input voltage.

  • PDF

Extraction of Pure Si from an Al-Si Alloy Melt during Solidification by Centrifugal Force (Al-Si 합금 융체로부터 순 실리콘의 원심분리 추출)

  • Cho, Ju-Young;Kang, Bok-Hyun;Kim, Ki-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.874-881
    • /
    • 2011
  • The present study describes a new technique to extract the primary silicon from an Al-Si alloy melt using centrifugal force during its solidification. The primary silicon was separated from an Al-50 wt.%Si alloy by centrifugal force in the form of a foam, which facilitated subsequent acid leaching to extract the pure silicon due to its wide surface area. The foam recovery after centrifugal separation was decreased as centrifugal acceleration was increased. The final recovery after acid leaching became closer to the solid fraction of the alloy, which was calculated from the Al-Si binary phase diagram, with increasing centrifugal acceleration due to the effective removal of the attached Al on the foam. The purity of the primary silicon obtained by the centrifugal separation method was over 99.99%, with only aluminum being also present.

A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy (과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰)

  • Park, Jeong-Wook;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

Profile of Primary Health Care Post - Focused on Saje PHCP in Wonju-Si, Kangwon-Do, Korea -

  • So, Ae-Young
    • Journal of Korean Academy of Rural Health Nursing
    • /
    • v.3 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • This profile presents a brief overview of the past and current primary health care of Saje PHCP in Wonju Si, Kangwon-Do, Korea. Because of the increasing in the proportion of the elderly in the population and the vulnerability among groups, they are one of the main targets of the PHC through programs such as chronic disease management, health promotion activities (exercise, diet, smoking and alcohol control). Curative services have been decreased and preventive services have been increased.

A Study on the Effect of Ca and P on the Microstructure in Solidification of Al-7wt%Si-0.3wt%Mg Alloy (Al-7wt%Si-0.3wt%Mg 합금의 응고시 미세조직에 미치는 Ca 및 P의 영향에 관한 연구)

  • Kwon, Il-Soo;Kim, Jeong-Ho;Kim, Kyoung-Min;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.349-356
    • /
    • 1998
  • In this study, the influence of impurity element Ca, P on solidification behavior and morphology of eutectic silicon was examined by observation of microstructure and by DSC analysis. In the case of 1.3 ppm P, eutectic Si was fine and fibrous when the added amount of Ca was 500 ppm, However, the modification of eutectic Si was depressed by formation of polygonal Ca-Si compounds when the addition amount of Ca was greater than 1000 ppm. The addition of Ca 500 ppm depressed the primary and eutectic temperature. The primary and eutectic temperature were depressed with Ca 500 ppm but rather ascended when the addition amount of Ca was more than 1000 ppm. When the content of P was 17.5 ppm, eutectic Si had modified morphology with Ca addition. DAS was increased, the primary temperature was ascended and eutectic temperature was depressed with Ca added. Eutectic Si appeared as coarse flake phase and DAS was decreased with the increase of P content. The existence of P in the melt depressed the primary temperature and ascended eutectic temperature.

  • PDF

A Study on the Manufacturing of Hypereutectic Al-Si Alloy Modifier by Mechanical Alloying Process and its Modification Effects (기계적합금화법에 의한 과공정 Al-Si 합금 미세화제 개발 및 개량효과에 관한 연구)

  • Park, Jae-Young;Lee, Jae-Sang;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.416-421
    • /
    • 1995
  • Recently Al-Cu-P alloys are used to refine primary Si of hypereutectic Al-Si alloys. Because it has inside AlP compound that acts as nucleation site in the melt, Al-Cu-P alloy has good refinement effect in lower holding temperature and after shoter holding times. In this study Al-Cu-P refinement agent was made by mechanical alloying method. When Al-13.5wt%Cu-1.5wt%P was alloyed mechanically for 30hr in Ar atmosphere by high energy ball mill, it had the refinement effect that showed primary Si size of about $30{\mu}m$ in Al-20wt%Si at $760^{\circ}C$, treated for 15min.

  • PDF

The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite (사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF

A Study on Manufacturing Process of Hypereutectic Al-Si Alloy via Horizontal Continuous Casting (수평연속주조에 의한 과공정 Al-Si합금 제조에 관한 연구)

  • You, Bong-Sun;Ji, Mu-Sung;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.116-123
    • /
    • 1996
  • The equipment for the horizontal continuous casting was built to produce hyper-eutectic Al-Si bars with a small cross-section of 25mm in diameter. The manufacturing processes including withdrawal cycle and secondary cooling methods were modified to refine the primary and the eutectic Si. The longitudinal casting speeds varied over the ranges of 670-1100mm/min for pure Al, and 200-350mm/min for Al-17wt%Si alloy. Due to the difference of cooling rate in the mould, microstructural asymmetry between the lower and the upper part of bar was observed. Thus, manufacturing processes such as cooling and withdrawal method were optimally combinated to get the homogeneous cast structure. With the increase of casting speed, the primary Si size was refined down to $30{\mu}m$ near the surface, and $80{\mu}m$ in the center of the bar.

  • PDF