• Title/Summary/Keyword: Primary Si

Search Result 528, Processing Time 0.024 seconds

Multifactor Balance Concept as a Primary Countermeasure for Environmental Stresses of Crops (작물의 일차적 재해방지 요건으로서의 다요인 평형조절 개념)

  • 박천서
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.1-12
    • /
    • 1989
  • The primary countermeasure for environmental stresses of crops grown in Korea would be to maintain top soil content of available B for upland crops and Si for low land rice in balance with other nutrient elements such as N, P and K, so as to maintain those nutrient balances in plants. Development of standard levels of elements in soils for balances uptake of those elements by plants are needed under the multi nutrient factor balance concept using the soil test results.

  • PDF

Basic Research for Development of Hypereutectic Al-Si Alloyed Cylinder Block Bore by Plasma Spraying System for Internal Diameters (내경 플라즈마 용사법에 의한 과공정 Al-Si 합금의 실린더 블록 보어 개발을 위한 기초연구)

  • Kim, Byeong-Hui;Lee, Hyeong-Geun;Kim, Hye-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.965-971
    • /
    • 2001
  • The objective of this study is to investigate the characteristics - microstructure, hardness, adhesive strength and friction coefficient - of the coatings with aging - treatment after optimizing internal- plasma spraying parameters for Al-30wt%Si powder as a basic research to manufacture the cylinder block bore for Al engine composed of Al-30wt%Si alloy on Al alloy, The optimum internal-plasma spraying parameters of Al-30wt%Si alloy are summarized as follows: voltage: 37.5V, current: 160A, working distance: 25mm, gun traverse speed: 4.5mm/s, rotating speed: 518m/min. The primary Si particles grew aggressively with increasing heat-treating temperature. The hardness of the as-sprayed coating was about Hv=275 but this value was abruptly decreased with increasing heat-treating temperature. And average friction coefficient of the coating was below 0.08 after heat treatment for 48h at $175^{\circ}C$.

  • PDF

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Effect of Casting Speed on Microstructure and Mechanical Properties of Al-Mg-Si/Al Hybrid Material by Duo-Casting

  • Park, Sung Jin;Suh, Jun-Young;Lee, Hee-Kwon;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.111-116
    • /
    • 2020
  • Two different casting speeds of 60 and 80mm/min are adopted to determine the effect of casting speed on the microstructure and mechanical properties of Al-Mg-Si/Al hybrid material prepared by duo-casting. The obtained hybrid material has a uniform and straight macro-interface between the pure Al side and the Al-Mg-Si alloy side at both casting speeds. When the casting speed is increased to 80mm/min, the size of primary α phases in Al-Mg-Si alloy decreases, without change of shape. Although the Al-Mg-Si alloy produced at higher casting speed of 80mm/min shows much higher ultimate tensile strength (UTS) and 0.2 % proof stress and lower elongation, along with higher bending strength compared to the case of the 60mm/min in casting speed, the tensile properties and bending strength of the hybrid material, which are similar to those of pure Al, are the same regardless of the increase of casting speed. Despite the different casting speeds, deformation and fracturing in hybrid materials are observed only on the pure Al side. This indicates that the macro-interface is well-bonded, allowing it to endure tensile and bending deformation in all hybrid materials.

A Study on SI Project Environment and Risk Management Practice (국내 SI 프로젝트 수행환경 진단 및 위험관리 방안 연구)

  • 김현수
    • Korean Management Science Review
    • /
    • v.16 no.1
    • /
    • pp.203-218
    • /
    • 1999
  • This study presents a diagnosis of SI project environment and risk management practices in Korea. In particular, the stability of project environment, required skills for project managers, risk factors and usefulness of risk management activities are surveyed and analysed. Factor analysis and correlation analysis are performed to investigate any significant relationships among various risk management factors. The results indicate that SI project environment is not stable in Korea, and risk management can be a primary project management tool to deal with the situation. The results also that there's little significant difference in understanding not only between the clients and developers, but alto between the experienced managers and less experienced managers.

  • PDF

The effect of silicon and manganese on (Modelling FCW 용착금속의 기계적 성질에 미치는 Si, Mn의 영향)

  • 양철웅;강춘식;김경중
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.27-39
    • /
    • 1990
  • The effect of silicon and manganese, in the ranges of 0.3% to 1.0wt% Si and 0.7 to 2.6wt%Mn, on the microstructure and mechanical properties of flux cored arc welded deposits have been investigated for the purpose of improving mechanical properties. Microstructure of weld metals was mainly influenced by manganese content, and manganese increased the volum fraction of acicular ferrite and refined the microstructure. Also, tensile properties were governed by manganese content, ultimate tensile strength and yield strength were increased by approximately 82MPa and 58MPa per 1% Mn addition to the deposit. Toughness was improved by increasing Mn content and lowering Si content. Optimal impact properties were obtained at above 1.8wt% Mn and below 0.5wt% Si. Acicular ferrite was predominant factor in improving mechanical properties. Formation of acicular ferrite was promoted by manganese and no direct relationship between AF(acicular ferrite) proportion and oxygen in weld metal was found.

  • PDF

Effects of Si, Mn, and Cr on the dissociation rate of $Fe_3C$. (철탄화물의 분해속도에 미치는 Si, Mn 및 Cr 의 영향)

  • Kim, Dong-Ui
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.13-18
    • /
    • 1985
  • Decarburization phenomena were investigated at $800^{\circ}C$ by the $PH_2O/PH_2$ + Ar gas mixture in the case iron range which contains Si, Mn and Cr as an alloying elements. Dissociation of cementite in a matrix which contains graphitizer as Si begins at the carbon rich cementite dendrite arms. Several primary austenite $({\gamma})$ skeletons are surrounded by those nucleated graphite nodules, and that forms a limited area of nucleation region. Decarburization reactions at $800^{\circ}C$ in Fe-C, Fe-Mn-C and Fe-Cr-C alloy are followed by parabolic rate law under the gas mixture of $PH_2O/PH_2=0.01$ and the modified rate const. ${\kappa}$ were in the range of $1{\sim}6{\times}10^{-10}cm^2/s$.

  • PDF

Mechanical Properties of Al-Si Composite Powders produced by Gas Atomization Process

  • Kim Jin-Chun;Wang Li-Fe;Chung In-Sang;Kim Yong-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.46-47
    • /
    • 2004
  • The microstructure and mechanical properties of the hypereutectic prealloyed Al-Si powders prepared by the gas atomization process were described in this paper. With increasing the gas pressure of the atomization, the average powder size was decreased from about $145{\mu}m\;to\;80{\mu}m$. The primary eutectic Si particles were uniformly distributed in the Al matrix and their size varied in the range of $8-10{\mu}m$. The high densified specimens with above 96% of the theoretical density were fabricated the hot pressing process. The UTS mechanical properties of VN1 specimens were much higher than that of conventional hypoeutectic Al-Si alloys.

  • PDF

A Study on the Home-Range and Habitat Use of Spot-Billed Duck (Anas poecilorhyncha) in Spring

  • Kim, Soon-Sik;Kang, Tehan;Kim, Dal-Ho;Han, Seung-Woo;Lee, Seung-Yeon;Cho, Haejin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.4
    • /
    • pp.199-203
    • /
    • 2022
  • The spring home range and habitat use of the spot-billed duck in Korea were studied using GPS-mobile phone-based telemetry (WT-300). The study areas were Anseong-si, Seosan-si, Nonsan-si, and Sejong-si. Analysis was performed using minimum convex polygon (MCP) and kernel density estimation (KDE) spot-billed ducks had an average home range of 70.28 km2 (standard deviation [SD]=84.50, n=6), and a core habitat (50%) 2.66 km2 (SD=2.60, n=6), according to MCP and KDE, respectively. Wetlands (41.5%) and rice fields (35.7%) were highly used as habitats. The rice field use rate was high during the day, and the wetland utilization rate was high at night. Rice fields and wetlands were the primary habitats in spring.

Formation and Structure of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 형성 및 구조)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.729-738
    • /
    • 1992
  • The glass formation and structural change with the glass compositions were investigated in the CaO-P2O5-SiO2 system with less than 40 wt% of P2O5. The glass formation range was determined by XRD, SEM and EDS techniques for water quenched specimens. The structural analyses were made for binary CaO-SiO2 glasses and ternary CaO-P2O5-SiO2 glasses by using FT-IR and Raman spectroscopy. The glass formation was affected by CaO/SiO2 mole ratio, P2O5 content and primary crystalline phase. The stable glass formation range was found when the transformed CaO/SiO2 mole ratio (new factor derived from structural changes) was in the range of 0.72~1.15 with less than 10 mol% of P2O5. The structural analyses of CaO-SiO2 glasses indicated that as the CaO/SiO2 ratio was increased, the nonbridging oxygens in the structural unit of the glasses were increased. With addition of P2O5 to CaO-SiO2 glasses, the P2O5 enhanced the polymerization of [SiO4] tetrahedra unit in CaO-SiO2 glasses, which contained a large portion of nonbridging oxygen. The phosphate eliminated nonbridging oxygens from silicate species, forcing polymerization of silicate structures and produced in [PO4] monomer in glasses. When added P2O5 was kept constant, the structural change with various CaO/SiO2 ratio was very similar to that of CaO-SiO2 glasses.

  • PDF