• 제목/요약/키워드: Primary Creep

검색결과 77건 처리시간 0.025초

Thermal creep behavior of CZ cladding under biaxial stress state

  • Jin, Xin;Lin, Yuyu;Zhang, Libin
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2901-2909
    • /
    • 2020
  • Thermal creep is a key property of zircaloy cladding. CZ developed by CGN is a new zircaloy used as PWR fuel cladding. This research is devoted to investigating the thermal creep behavior of CZ and build the thermal creep model of CZ. Twenty internal pressure creep tests were conducted, and the ranges of temperature and Tresca stress were 320-430 ℃ and 70-300 MPa, respectively. Real-time creep data were analyzed by separating primary creep and steady-state creep. Based on Soderberg model and creep test data, CZ thermal creep model is derived. As a whole, the mean value and the standard deviation of P/M of CZ saturated primary creep strain are very close to these from steady-state creep rate, however, the predictive effect of primary creep is less satisfactory. Four conditions, where there exists large deviation between predicted values and test data, are 320 ℃ and 300 MPa, 350 ℃ and 190 MPa, 380 ℃ and 160 MPa, 380 ℃ and 190 MPa, respectively. As primary creep was much smaller than steady-state creep in long-time operation, the thermal creep model built can be applied to predict the thermal creep behavior of CZ cladding.

화강풍화토의 creep 변형특성 (Creep Deformation Characteristics of Weathered Granite Soil)

  • 박흥규;김용하;팽우선;이해수
    • 한국지반공학회논문집
    • /
    • 제23권12호
    • /
    • pp.43-52
    • /
    • 2007
  • 본 연구는 도로 성토재인 화강 풍화토의 creep 변형 거동특성 분석을 하였다. 일축압축 상태에서의 creep 변형률은 버저스 물체의 이론적 해석치와 비교적 잘 일치하였다. 탄성변형은 작용하중이 클수록 오랜 시간 경과 후 종료되었다. 1차 creep 변형률은 0.0028이며 이는 하중 재하 후 $3{\sim}5$일 이내에 완료되는 것으로 분석되었으며 성토체의 1차 creep 변형 완료 시간은 성토고에 비례하여 증가 되는 것으로 판단되었다. 2차 creep 변형률은 1차 creep 변형률의 약 50%정도로 나타났다.

1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석 (Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate)

  • 최현창
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.

용접 계면균열의 크리프 균열성장 거동에 관한 연구 (A Study on Creep Crack Growth Behavior of Weld Interface Crack)

  • 윤기봉;김광웅;정용근
    • Journal of Welding and Joining
    • /
    • 제16권4호
    • /
    • pp.83-91
    • /
    • 1998
  • Cracking problems which high temperature plant components suffer during long-term service, occur very often at welded locations. The crack occurs due to accumulated creep damage near fusion line or at heat affected zone (HAZ). However, most of the studies on creep crack growth behavior have been performed with matrix metal not wit welded metal due to the difficulty of interpreting the test results. In this study, creep crack growth rates were measured with C(T) specimens whose cracks were formed along the fusion line or HAZ. The measured crack growth rates were characterized by {TEX}$C_{t}${/TEX}-parameter derived for elastic-primary-secondary creeping material. Since contribution of primary creep was significant for the tested 1Cr-0.5Mo steel, its effect was carefully studied. Effects of crack tip plasticity and material aging were also discussed.

  • PDF

고온용 복합재료의 크립 거동에 있어서 구성요소의 영향에 대한 연구 (A Study on the Influence of its Constituents on the Creep Behavior of High Temperature Composite Materials)

  • 박용환
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.45-53
    • /
    • 1998
  • A method to predict the creep behavior of fiber-reinforced ceramic composites at high temperatures was suggested based on finite element modeling using constituent creep equations of fiber and matrix and showed good agreement with the experimental results. The effects of matrix creep behavior, fiber volume fraction, and residual stresses on the composite creep behavior were also investigated. The results showed that the primary behavior of composites was greatly affected by that of matrix but post-primary behavior was governed by fiber creep characteristics. The increase of fiber volume fraction from 15 vol% to 30 vol% caused the 50% and 40% decrease of steady-state creep rates and total creep strains at $1200^{\circ}C$, 180MPa, respectively. Feasible compressive residual stresses in the matrix caused by different thermal expansion coefficients between the fiber and the matrix could significantly reduce total creep strains of the composite. The creep deformation mechanism in the fiber-reinforced ceramic composites could be explained by the stress transfer and redistribution in the fiber and matrix due to different creep characteristics of its constituents.

  • PDF

Al 7075 합금의 크리이프 파단수명에 관한 연구(II) (A Study on the Creep Fracture Life of Al 7075 Alloy(II))

  • 강대민
    • 한국안전학회지
    • /
    • 제9권4호
    • /
    • pp.29-41
    • /
    • 1994
  • High temperature tensiles tests, steady state creep tests, internal stress tests and creep rupture tests using Al 7075 alloy were performed over the temperature range of 9$0^{\circ}C$~50$0^{\circ}C$ and stress range of 0.64~17.2(kgf/$\textrm{mm}^2$) in order to investigate the creep behavior and predict creep rupture life From the apparent activation energy Qc and the applied stress exponent n measured, at the temperature range of 9$0^{\circ}C$~l2$0^{\circ}C$, the creep deformation seemed to be controlled by cross slip. On the other hand at the temperature of 20$0^{\circ}C$~23$0^{\circ}C$ the creep deformation seemed to be controlled by dislocation climb but at 47$0^{\circ}C$~50$0^{\circ}C$, by diffusion creep. And the rupture life(t$_{f}$) might be represented by anthermal process attributed to the difference of the applied stress dependence of Internal stress and the ratio of the Internal stress to the applied stress, the thermal activated process attributied to the temperature dependence of the internal stress. Also the ratio between stress dependence of primary creep rate and that of minimum creep rate was measured 0.46, the minimum creep rate is expected to be appromately obtained from master creep curve including the relationship primary creep rate and minumum creep rate. Finally the relationship new rupture parameter and logarithmic stress was represented with including the ratio between the dependence of primary creep rate and that of minimum creep rate, using the new rupture parameter the rupture life predition is exactly expected.d.

  • PDF

사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향 (The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite)

  • 박용환
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF

크리프 균열 진전 거동의 유한 요소 해석 (Finite Element Analysis of Creep Crack Growth Behavior)

  • 최현창
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.490-497
    • /
    • 1998
  • An elast-biscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. The results of mesh translation method are compared with those of node release method. Load line displancement curve obtained from the crack growth analysis by mesh translation shows the improved results than that obtained from the crack growth by node release method when the secondary creep rate is only used as creep material property. The results of accounting for primary creep rate and instantaneous plasticity shows a good agreement with the experimental result.

  • PDF

알루미나의 고온 굽힘 크리프 및 크리프 파괴 (Bending Creep and Creep Facture of Alumina under High-Temperature)

  • 김지환;권영삼;김기태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

알루미나의 고온 굽힘크리프 및 크리프 파괴 (Bending Creep and Creep Fracture of Sintered Alumina under High-Temperature)

  • 김지환;권영삼;김기태
    • 한국세라믹학회지
    • /
    • 제31권5호
    • /
    • pp.543-551
    • /
    • 1994
  • The creep behavior and creep fracture of sintered alumina at high temperature were investigated under four point flexural test. Steady-state creep behavior was observed at low bending stress and primary creep until fracture was observed at hish bending stress. The loading history of bending stress did not affect on steady-state creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep of alumina under high temperature by nucleation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF