Journal of the Korea Society of Computer and Information
/
v.15
no.12
/
pp.11-18
/
2010
In this paper, We suggest new strategies on non-interactive agents applied in a prey pursuit problem of multi agent research. The structure of the prey pursuit problem by grid space(Four agent & one prey). That is allied agents captured over one prey. That problem has long been known in interactive, non-interactive of multi agent research. We trying hard to find its own solution from non-interactive agent method on not in the same original environment(circular environment). We used ACS applied Direction vector to learning and decide on a direction. Exchange of information between agents have been previously presented (an interactive agent) out of the way information exchange ratio (non-interactive agents), applied the new method. Can also solve the problem was to find a solution. This is quite distinct from the other existing multi agent studies, that doesn't apply interactive agents but independent agent to find a solution.
Q-learning is a recent reinforcement learning algorithm that does not need a modeling of environment and it is a suitable approach to learn behaviors for autonomous agents. But when it is applied to multi-agent learning with many I/O states, it is usually too complex and slow. To overcome this problem in the multi-agent learning system, we propose the successive Q-learning algorithm. Successive Q-learning algorithm divides state-action pairs, which agents can have, into several Q-functions, so it can reduce complexity and calculation amounts. This algorithm is suitable for multi-agent learning in a dynamically changing environment. The proposed successive Q-learning algorithm is applied to the prey-predator problem with the one-prey and two-predators, and its effectiveness is verified from the efficient avoidance ability of the prey agent.
The most important problems in the multi-agent system are to accomplish a gnat through the efficient coordination of several agents and to prevent collision with other agents. In this paper, we propose a new control strategy for succeeding the goal of a prey pursuit problem efficiently Our control method uses reinforcement learning to control the multi-agent system and consider the distance as well as the space relationship among the agents in the state space of the prey pursuit problem.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.48
no.2
/
pp.78-85
/
2011
In this paper, a research on multi-agent is carried out in order to develop a system that can provide drivers with real-time route recommendation by reflecting Dynamic Environment Information which acts as an agent in charge of Driver's trait, road condition and Route recommendation system. DEI is equivalent to number of n multi-agent and is an environment variable which is used in route recommendation system with optimal routes for drivers. Route recommendation system which reflects DEI can be considered as a new field of topic in multi-agent research. The representative research of Multi-agent, the Prey Pursuit Problem, was used to generate a fresh solution. In this thesis paper, you will be able to find the effort of indulging the lack of Prey Pursuit Problem,, which ignored practicality. Compared to the experiment, it was provided a real practical experiment applying the algorithm, the new Ant-Q method, plus a comparison between the strategies of the established direction vector was put into effect. Together with these methods, the increase of the efficiency was able to be proved.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.12
no.1
/
pp.86-93
/
2012
This paper presents a new approach to solve the pursuit problem based on a univector field method. In our proposed method, a set of eight agents works together instantaneously to find suitable moving directions and follow the univector field to pursue and capture a prey agent by surrounding it from eight directions in an infinite grid-world. In addition, a set of strategies is proposed to make the pursuit problem more realistic in the real world environment. This is a general approach, and it can be extended for an environment that contains static or moving obstacles. Experimental results show that our proposed algorithm is effective for the pursuit problem.
This paper analyzes the behaviour of a prey to avoid the pursuit of a predator at predator-prey relationship to be appeared in the collective behavior of animals. One of the methods to avoid the pursuit of a predator is to rotate quickly when a predator arrives near to it. At that moment, a critical distance and a rotating angular are very important for the prey in order to survive from the pursuit, where the critical distance is the distance between the predator and the prey just before rotation. In order to analyze the critical distance and the rotating angular, this paper introduces the energy for a predator which it has at starting point of the chase and consumes during the chase. Through simulations, we can know that the rotating angle for a prey to survive from the pursuit is increased when the critical distance is shorter and when the ratio of predator's mass and prey's mass is also decreased. The results of simulations are the similar phenomenon in nature and therefore it means that the method to analyze in this paper is correct.
The most important problems in the multi-agent system are to accomplish a goal through the efficient coordination of several agents and to prevent collision with other agents. In this paper, we propose a new control strategy for succeeding the goal of the prey pursuit problem efficiently. Our control method uses reinforcement learning to control the multi-agent system and consider the distance as well as the space relationship between the agents in the state space of the prey pursuit problem.
International Journal of Industrial Entomology and Biomaterials
/
v.2
no.2
/
pp.173-180
/
2001
The stink bug, Eocanthecona furcellata (Wolff.) is a natural and potential biocontrol agent of Spilarctia obliqua (Walk.). The present investigation reveals the biology, predatory efficiency and reproductive parameters of the predator which feeds on S. obliqua caterpillars in mulberry plantation. In order to find out the role of prey sine on the biology of the predators the predatory insects were separately fed with small and large caterpillars of S. obliqua. The incubation period of the eggs of E. furcellata was 8.37${\pm}$0.44 days, while the nymphal duration varied as per the prey sine. The predator when supplied with small larvae of prey, consumed 61.1 larvae and completed nymphal stage in 19.9 days; while those fed with larger prey, consumed 36.1 larvae and completed their nymphal stage in 21.55 days. The prey size also influences the reproductive parameters of the predator, The adult female predator is more voracious feeder than the adult male and consumed 41.9${\pm}$0.64 small larvae and 42.2${\pm}$0.87 large larvae during their life span. The longevity of male and female was observed as 20.7 and 29.4 days respectively. Visualization of the predator as well as the movement of the prey increases the predatory efficiency. Scanning electron microscopic studies on the feeding part explain its support in effective predation. Field observations indicated a drastic fall in the incidence of the mulberry pest, S. obliqua with the increased population E. furcellata in mulberry plantation.
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.285-288
/
2000
본 논문에서는 다중 에이전트(multi-agent) 환경에서 에이전트들의 행동을 효율적으로 조정 (coordination)하기 위해 강화 학습(reinforcement learning)을 이용하였다. 제안된 방법은 각 에이전트가 목표(goal)와의 거리 관계(distance relationship)와 인접 에이전트들과의 공간 관계(spatial relationship)를 이용하였다. 그러므로 각 에이전트는 다른 에이전트와 충돌(collision) 현상이 발생하지 않으면서, 최적의 다음 상태를 선택할 수 있다. 또한, 상태 공간으로부터 입력되는 강화 값이 0과 1 사이의 값을 갖기 때문에 각 에이전트가 선택한 (상태, 행동) 쌍이 얼마나 좋은가를 나타낼 수 있다. 제안된 방법을 먹이 포획 문제(prey pursuit problem)에 적용한 결과 지역 제어(local control)나. 분산 제어(distributed control) 전략을 이용한 방법보다 여러 에이전트들의 행동을 효율적으로 조정할 수 있었으며, 매우 빠르게 먹이를 포획할 수 있음을 알 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.525-528
/
2004
먹이추적문제(prey pursuit problem)는 가상 격자로 이루어진 공간 내에 다중의 에이전트를 이용하여 먹이를 포획하는 것이다. 에이전트들은 먹이를 포획하기 위해 $30{\times}30$으로 이루어진 격자공간 (gride)안에서 기존 제안된 지역 제어, 분산 제어, 강화학습을 이용한 분산 제어 전략들을 적용하여 먹이를 포획하는 전략을 구현하였다. 제한된 격자 공간은 현실세계를 표현하기에는 너무도 역부족이어서 본 논문에서는 제한된 격자공간이 아닌 현실 세계와 흡사한 무한 공간 환경을 표현하고자 하였다. 표현된 환경의 모델은 순환구조(circular)형 격자 공간이라는 새로운 실험 공간이며, 새로운 공간에 맞는 전략은 에이전트와 먹이와의 추적 관계를 방향 벡터를 고려한 모델로 구현하였다. 기존 실험과는 차별화 된 환경에서 에이전트들은 휴리스틱을 통한 학습을 할 수 있다는 가정과 먹이의 효율적 포획, 충돌문제 해결이라는 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.