• Title/Summary/Keyword: Prestressing

Search Result 554, Processing Time 0.024 seconds

Analysis of Strengthened Concrete Deep Beam Using Strut-Tie Model (보강된 콘크리트 깊은 보의 스트럿-타이 모델 해석)

  • 곽형욱;송하원;변근주;지호석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.817-822
    • /
    • 2002
  • In this paper, the strengthening analysis by strut-tie model for strengthened shear failed RC deep beam by the so-called the Steel Clamping Unit (SCU), which is a strengthening equipment, is carried out. The analysis considers the span-to-depth ratio, the existence of prestressing and stirrup, the shape of shear crack, and the strengthening position of the SCU. Based on analytical results, optimized strengthening analysis and design are carried out by investigating the behavior of the strengthened deep beams. The comparison between analytical results and experimental results shows that optimum strengthening effect by the SCU can be obtained when compressive strut zone created by SCU is away from major shear crack of the beam as far as possible.

  • PDF

Shear Strength of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • This is the first of two part series on experimental studies of grout type transverse joints. In this study, grout type transverse joints between precast concrete slabs are statically tested to determine the cracking loads and ultimate shear capacities of the grout type transverse joints. The tests are performed with a loading equipment designed and constructed especially in the lab to induce shear failures on the joints of the test specimens. Shape of the transverse joints, grouting materials and amount of prestress are selected as test parameters for the study. The results indicate that epoxy is an excellent grouting material which can be used in limited locations where large tensile stress is acting on the slab. Longitudinal prestressing is also an effective method to increase the shear strength of the transverse joints. A rational method to estimate the cracking and ultimate loads for the design of grout type transverse joints is proposed based on the static loading tests. Success of the tests with shear loading equipment allowed continuing the research further onto the fatigue strength of the grout type joints, which will be presented in the second part of the paper.

  • PDF

Tensile Properties and Testing Method for Glass Fiber Reinforced Polymer Reinforcing bar (GFRP Rebar의 인장특성 및 시험법에 관한 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Choi Ki-Sun;You Young-Jun;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.172-175
    • /
    • 2004
  • This study is to investigate the tensile properties of glass fiber reinforced polymer(GFRP) reinforcing bars with various kinds of anchor systems experimentally. Three types of anchor systems were examined: resin sleeve anchor adopted by CSA Standard, metal overlay anchor by ASTM Standards and wedge anchor normally used in prestressing tendons. Also, three different types of GFRP bars with different surface deformations were tested in this study. All test procedures including specimens preparation, test apparatus and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found that the highest tensile strength of GFRP bar was developed by resin sleeve anchor, and tensile strength of GFRP bar with CSA anchor system is $10\%$ higher than that with ASTM anchor system in the case of sand-coated GFRP bar.

  • PDF

Experimental Study on PSC beams Strengthened by Externally Prestressed Tendons and CFRP Sheets (외부 프리스트레싱과 CFRP 쉬트로 보강된 PSC 보의 실험적 연구)

  • You Young Jun;Park Young Hwan;Park Jong Sup;Jung Woo Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.100-103
    • /
    • 2004
  • Bridges are deteriorating over service life due to over weight vehicles, environmental conditions and so on. In addition to that, those could be classified into low level bridges which are not fit for highway because of upgrade of the design load. Consequently, such reasons impel the bridges to be repaired or strengthened. Among the rehabilitating methods, FRP sheets and externally prestressing methods are preferred recently. This paper presents experimental results about the behavior of PSC beams strengthened by external tendons and CFRP sheets.

  • PDF

An experimental study on the mechanical properties of early age concrete (초기재령 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Kwang-Gyo;Yang, Eun-Ik;Yi, Seong-Tae;Kim, Myung-You;Park, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.668-671
    • /
    • 2004
  • Recently, the concern for mechanical properties at early age concrete are increasing because of the importance of the thermal stress and the determination of removal time of form work and prestressing work. In this study, an estimation for the development of compressive strength and elastic modulus with age in concretes isothermally cured $(10^{\circ}C,\;20^{\circ}C)$ and having W/C ratio of 30, 40, and $50\%$ were investigated. According to experiment results, the development of compressive strength and elastic modulus shows higher values at early ages as the W/C ratio decreases and curing temperature increases. When the maturity concept, for estimation of the strength, is adopted, a modification for W/C ratio is required at early ages.

  • PDF

Flexural Strengthening Capacities in Prestressed concrete Beams Applied to Outcable technique (아웃케이블 공법을 적용한 프리스트레스 철근콘크리트 보의 휨보강 성능)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Lim Jea-Hyung;Moon Jeong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.268-271
    • /
    • 2004
  • A strengthening technique for reinforced concrete beams using external unhanded reinforcement offers advantages in speed and simplicity of installation over other, established, strengthening techniques. The purpose of this paper is to investigate the capabilities of a new retrofitting technique, namely external prestressing out cable, for flexural strengthening of beams. The paper provides a general description of structural behavior of beams strengthened using the technique. Results of four physical tests on strengthened reinforced concrete beams are reported and compared. It is shown that the technique can provide greater strength enhancement to lightly reinforced sections and that provision of deflectors enhances efficiency.

  • PDF

Fiber method analysis of rc beam retrofitted with turnbuckle external post-tensioning

  • Lejano, Bernardo A.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.67-86
    • /
    • 2016
  • Strengthening as well as correcting unsightly deflections of reinforced concrete (RC) beam may be accomplished by retrofitting. An innovative way to do this retrofitting that is proposed in this study utilizes turnbuckle to apply external post-tensioning. This Turnbuckle External Post-Tensioning (T-EPT) was experimentally proven to improve the serviceability and load carrying capacity of reinforced concrete beams. The T-EPT system comprises a braced steel frame and a turnbuckle mechanism to provide the prestressing force. To further develop the T-EPT, this research aims to develop a numerical scheme to analyze the structural performance of reinforced concrete beams with this kind of retrofitting. The fiber method analysis was used as the numerical scheme. The fiber method is a simplified finite element method that is used in this study to predict the elastic and inelastic behavior of a reinforced concrete beam. With this, parametric study was conducted so that the effective setup of doing the T-EPT retrofitting may be determined. Different T-EPT configurations were investigated and their effectiveness evaluated. Overall, the T-EPT was effective in improving the serviceability condition and load carrying capacity of reinforced concrete beam.

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.

Determination of Effective Prestress of Post-tensioned Precast Bridge Piers (포스트텐션 조립식 교각의 유효프리스트레스 크기 결정)

  • Shim, Chang Su;Koem, Chandara
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • In this paper, a design concept of post-tensioned precast bridge piers was proposed to improve seismic behavior of the bridge pier. Mild reinforcing bars are placed continuously along the height of the column. Prestressing tendons are also provided to obtain re-centering capability for seismic events. Arrangement of the axial steels to prevent buckling of rebars at plastic hinge region was suggested and enhanced seismic performance was verified by experiments. Moment-curvature analyses were performed to evaluate the effect of effective prestress on seismic behavior after verifying the calculation method by cyclic tests of the precast columns. A real bridge pier was designed to investigate the seismic performance according to different level of effective prestress. Level of effective prestress showed obvious effect on crushing displacement but negligible effect on lateral displacement at fracture of tendons and reinforcements.

Effect of preloading on residual deformation of Back-To-Back reinfored wall (선행하중작용시 Back-To-Back(BTB) 보강토 옹벽의 거동 특성)

  • Kim, Sun-Bin;Yoo, Chung-Sik;Kim, Jae-Wang;Joo, Sung-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.251-258
    • /
    • 2008
  • The use of reinforced earth walls in permanent structures is getting it's popularity. Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, during their service period. In this investigation, the effect of preloading in reducing long term residiual deformation of back-to-back reinforced soil wall under sustained and/or repeated loading enviormentment using a series of reduced-scale model tests. It is found that the preloading technique can be an effective means of controlling residual deformations of reinforced soils under varisous loading conditions.

  • PDF