• Title/Summary/Keyword: Prestressing

Search Result 554, Processing Time 0.024 seconds

Development of the Braket for External Prestressing Method in Slab Bridge (슬래브교 외부 강선 보강용 정착구 개발)

  • 한만엽;이상열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.93-98
    • /
    • 2001
  • This study is to develop the end anchorage of external steel reinforcement of RC slab bridges. External prestress method using the existing steel is that When the anchorage is installed in slab end, a plenty of anchor bolts were required because the only tangential stress of anchor bolt received a tendon force. Then, for this reason, the wide end anchorage was required and the shape was complicate. But this reinforcement method using method that inserts anchor key at concrete surface cut a groove gets big internal force comparing to the anchorage using existing anchor bolt. Furthermore, the number of anchor bolt for installing apparently will be reduced, and the operation will be convenient because a small anchorage of a simple shape will be received a great tendon force

  • PDF

Advanced Geometrically Nonlinear FE Analysis of PSC Shell Structures (프리스트레스트 콘크리트 첼 구조물의 개선된 기하비선형 유한요소해석)

  • Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.195-200
    • /
    • 2001
  • Numerical procedures for the geometrically nonlinear finite element analysis of prestressed concrete shell structures under tendon-induced nonconservative loads have been presented. The equivalent load approach is employed to realize the effect of prestressing tendon. In this study, the tendon-induced nonconservative loads are rigorously formulated into the load correction stiffness matrix(LCSM) taking the characteristics of Present shell element into account. Also, improved nonlinear formulations of a shell element are used by including second order rotations in the displacement field. Numerical example shows that beneficial effect on the convergence behavior can be obtained by the realistic evaluation of tangent stiffness matrix according to the present approaches.

  • PDF

An Experimental Study on Interrelation of Influential Parameters on Unbonded Tendon Stress

  • Moon, Jeong-Ho;Lim, Jae-Hyung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.111-116
    • /
    • 2006
  • The purpose of this study is to investigate the relations between unbonded tendon stress and its influential parameters, i.e. bonded reinforcement ratio, span/depth ratio, and loading type. To this end, the influence of such parameters was examined with twenty eight test results of previous studies. Afterwards, an experimental study was carried out with twenty one test specimens. The investigation of previous and current experiments revealed the followings; (1) The bonded reinforcement ratio and prestressing ratio were proved to be important variables on the unbonded tendon stress. (2) The ratio of span to depth and the type of loading affected the unbonded tendon stress partially although their effects varied with bonded reinforcement ratio. (3) AASHTO LRFD Code and Moon/Lim's design equations predicted the experimental results well with the safety margin.

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

Study on Buckling Analysis of Portable Prestressing Bed (이동식 긴장대의 좌굴해석 기법 연구)

  • Kim, Jong-Suk;Yoon, Ki-Yong;Kim, Yong-Hyeog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.461-465
    • /
    • 2010
  • 본 연구는 유한요소해석프로그램(ABAQUS)을 사용하여 이동식 긴장대의 좌굴해석 기법을 연구한 것이다. 50m에 달하는 프리텐션 방식의 PSC 거더를 제작하기 위해서는 약 10MN에 이르는 매우 큰 긴장력이 가해져 이동식 긴장대가 콘크리트 양생전까지 이 긴장력을 저항하여야 한다. 따라서 이동식 긴장대는 좌굴에 대한 안정성을 확보하여야 한다. 이에 본 논문에서는 앞서 개발한 이동식 긴장대의 해석모델을 이용하여 좌굴해석 기법에 대해 연구하여 이동식 긴장대가 좌굴에 대한 안정성 확보 여부를 파악하고자 하였다.

  • PDF

New Rehabilitation Method of Prestressed Concrete Rahmen Bridge with a Hinge at Midspan (프리스트레스트 콘크리트 활절 라멘교의 신보강공법 (상진대교구교적용))

  • 이원표;하성욱;김성호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.979-984
    • /
    • 2001
  • The Sang-Jin bridge constructed by the Free Cantilever Method in 1985 is 4-span concrete rahmen bridge with a hinge at midspan. Due to the effect of creep, shrinkage of concrete and relaxation of tendon, the Sang-Jin bridge exposed the excessive displacement at midspan with the passage of time. In order to improve the load-carrying-capacity and durability of the bridge, needs to repair and rehabilitate the structure emerged. New rehabilitation methods were applied such as external prestressing of concrete box, application of pier pre-camber and steel truss jacking. Structural analysis and several tests including static load test, dynamic load test and ambient vibration test were executed to verify the improvement. The test result showed that the displacement of the midspan was improved by 10mm and it was verified that the stiffness of the bridge was increased. Totally, the load-carrying-capacity of Sang-Jin bridge was increased at least 1.56times which was attributed to the new rehabilitation method.

  • PDF

Development of the Bracket for External Prestressing Method for Slab Bridge (콘크리트 교량의 외부강선 보강을 위한 앵커키 정착장치의 개발 연구)

  • 한만엽;이상열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1009-1014
    • /
    • 2001
  • This study is to develop the end anchorage of external steel reinforcement of RC slab bridges. External prestress method using the existing steel is that When the anchorage is installed in slab end, a plenty of anchor bolts were required because the only tangential stress of anchor bolt received a tendon force. Then, for this reason, the wide end anchorage was required and the shape was complicate. But this reinforcement method using method that inserts anchor key at concrete surface cut a groove gets big internal force comparing to the anchorage using existing anchor bolt. Furthermore, the number of anchor bolt for installing apparently will be reduced, and the operation will be convenient because a small anchorage of a simple shape will be received a great tendon force.

  • PDF

Application of Concept of IPC Girder to Building Structures (IPC Girder 개념의 건축물에의 적용)

  • 이차돈;한만엽;박병엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.841-846
    • /
    • 2001
  • The applicability of the concept of IPC(Incrementally Prestressed Concrete) girder which effectively reduces the depth of the conventional prestressed girders by introducing prestress in two different stages is theoretically reviewed in this research. Expressions on top and bottom stresses resulting from different loading stages are presented. Beneficial effects of IPC girder compared with those traditional prestressed girders are evaluated by investigating the girder depth for the same span or girder span for the same girder depth. Parking structures and ware house structures which need relatively longer span and are subject to large live loads are considered in comparison. It was found that the single or double tee slab designed by IPC concept could be built upto 50% longer in its span and upto 45% less in its depth compared to those of traditionally prestressed single or double tee slabs. In addition, the amount of prestressing tendons could be reduced.

  • PDF

An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs (부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구)

  • 박홍용;연준희;최익창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Design of PSC-I Bridge with Widely Spaced Girder based on Parametric Study (변수연구를 통한 소수주형 PSC-I 거더 설계)

  • 심종성;김민수;김영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.507-512
    • /
    • 2002
  • Prestressed concrete I-girders were used in the bridge applications in the early 1950s. During the last four decades, the most widely used girder length of bridges have been below 30 meters. The main objective of this study is to develope the alternative section for widely spaced girder of 30 meters span bridge. Girder spacing, the number of strands and compressive strength of concrete are major parameters for widely spaced girders. The optimal girder spacing is determined through the parameter studies of design using widely spaced girders. 30m span bridges of widely girder spacing must use high-strength concrete. Although the basic unit cost of concrete is higher for high-strength concrete, it may be partially or even fully offset by reduced quantities of concrete as result of the smaller number of girders used. High-strength concrete girders have more prestressing strands per girder, but the total number of strands for all of the girders is less than that required for the larger number of normal-strength concrete girders. It could design PSC-I Birdge with widely spaced girder owing to high-strength concrete.

  • PDF