• 제목/요약/키워드: Prestressing

검색결과 554건 처리시간 0.031초

Conceptual design of light bascule bridge

  • Xu, Weiwei;Ding, Hanshan;Lu, Zhitao
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.381-390
    • /
    • 2008
  • This paper proposed a conceptual design of bascule bridge, which is a new kind of movable bridge with an aim of reducing the weight of superstructure. Compared with the traditional bascule bridge, the light bascule bridge chooses cable-stayed bridge with inclined pylon as its superstructure; therefore, the functions of balance-weight and structure will fuse into one. Otherwise, it adopts moving counterweight to adjust its center of gravity (CG) to open or close the bridge. In order to lighten the superstructure, it uses contact springs to auxiliary retract, and intelligent prestressing system (IPS) to control the main girder's deformation. Simultaneously the vibration control scheme of structure is discussed. Starting from establishing the mechanical model of bridge, this article tries to analyze the conditions that the design parameters of structure and attachments should satisfy to. After the design procedure was presented, an example was also adopted to explain the primary design process of this kind bridge.

원전 격납건물 돔 텐던의 축대칭 근사화에 대한 타당성 고찰 (Verification for Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building)

  • 전세진;정철헌;김영진;정연석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.81-84
    • /
    • 2004
  • Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice, which requires the axisymmetric approximation of the actual tendon arrangements in the dome. A procedure was previously proposed that can implement the actual 3D tendon stiffness and prestressing effect into the axisymmetric model for CANDU type. This paper further verifies and compares some methodologies adopted in the proposed scheme through some numerical examples.

  • PDF

외부 긴장 보강을 위한 탄소섬유 복합재료용 쐐기형 정착구 거동 (Behavior of Wedge-Type Anchor System for External Prestressing Method with CFRP)

  • 신재민;정대성;정우태;박종섭;박영환;김철영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.477-480
    • /
    • 2004
  • This paper present test result to develop wedge-type anchor system for external prestressing method with CFRP. The test results indicated that the lower a slope angle and elastic of wedge are, the higher ultimate strengths are for plate types. Bar types showed premature failure because of local high stress in FRP of anchor system. Therefore, to improve the strength for bar types needs further work of strengthening sleeves, slope angles of wedge and materials.

  • PDF

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

A continuity method for bridges constructed with precast prestressed concrete girders

  • Lee, Hwan Woo;Barnes, Robert W.;Kim, Kwang Yang
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.879-898
    • /
    • 2004
  • A method of making simply supported girders continuous is described for bridges with spans of 30-45 m. The splicing method takes advantage of an induced secondary moment to transform the self-weight stresses in the precast simply supported girders into values representative of a continuous girder. The secondary moment results from prestressing of continuity tendons and detensioning of temporary tendons in the girders. Preliminary sections are selected for spliced U-girder bridges with a range of span lengths. Use of the proposed technique results in girder depth reductions of 500-800 mm when compared to standard simply supported I-girder bridges. The flexural behavior of an example bridge with 40-m spans is examined to illustrate the necessary considerations for determining the optimum sequence of splicing operations.

Theoretical and experimental research of external prestressed timber beams in variable moisture conditions

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • 제4권2호
    • /
    • pp.191-209
    • /
    • 2015
  • Hybrid girders can be constructed in different geometrical forms and from different materials. Selection of beam's effective constellation represents a complex process considering the variations of geometrical parameters, changes of built in material characteristics and their mutual relations, which has important effect on the behavior of the girder. This paper presents the theoretical and experimental research on behavior of the timber-steel hybrid girders' different geometrical constellation with external prestressing and in different conditions of timber moisture. These researches are based on linear elastic analysis, and further refine by using the plasticity and damage models.

Calculation model for layered glass

  • Ivica Kozar;Goran Suran
    • Coupled systems mechanics
    • /
    • 제12권6호
    • /
    • pp.519-530
    • /
    • 2023
  • This paper presents a mathematical model suitable for the calculation of laminated glass, i.e. glass plates combined with an interlayer material. The model is based on a beam differential equation for each glass plate and a separate differential equation for the slip in the interlayer. In addition to slip, the model takes into account prestressing force in the interlayer. It is possible to combine the two contributions arbitrarily, which is important because the glass sheet fabrication process changes the stiffness of the interlayer in ways that are not easily predictable and could introduce prestressing of varying magnitude. The model is suitable for reformulation into an inverse procedure for calculation of the relevant parameters. Model consisting of a system of differential-algebraic equations, proved too stiff for cases with the thin interlayer. This novel approach covers the full range of possible stiffnesses of layered glass sheets, i.e., from zero to infinite stiffness of the interlayer. The comparison of numerical and experimental results contributes to the validation of the model.

CFTA거더의 정적 거동연구 (Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder)

  • 김종인;김두기;이장형;김정호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.225-231
    • /
    • 2009
  • 본 연구는 기존의 CFT구조, 아치구조, 프리스트레스구조를 조합을 통해 복합구조를 이루는 CFTA거더를 소개하고, 25m의 CFTA거더의 실험결과와 유한요소해석 프로그램인 Strand7을 이용하여 해석결과를 비교 분석하였다. 실험체의 정적재하실험으로 거더 중심부에서 양쪽으로 1m 이격한 거리에 58kN, 88kN, 148kN, 207kN, 298kN의 하중을 재하 하고, 발생하는 변위와 변형률을 측정하였다. 또한, 실험결과를 바탕으로 구조해석 프로그램인 Strand7로 구조안정성을 검토하고, 긴장재의 긴장력과 콘크리트의 탄성계수를 각각 20%증감하여 해석을 수행 하여 변형률과 변위값을 계산하였다. 초기 변위와 변형률은 긴장재의 긴장력의 증감에 따라 영향이 나타났으며, 추가적인 정적 하중이 재하 되었을 경우에는 콘크리트의 탄성계수만이 변위와 변형률에 영향을 미치는 것으로 확인 되었다.