• Title/Summary/Keyword: Pressurized Light Water Reactor

Search Result 37, Processing Time 0.019 seconds

CORE DESIGN CONCEPTS FOR HIGH PERFORMANCE LIGHT WATER REACTORS

  • Schulenberg, T.;Starflinger, J.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modem fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with $380^{\circ}C$ core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around $500^{\circ}C$, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors.

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor (원자력발전소 기기냉각수계통의 판형열교환기 적용성)

  • Lim, Hyuk-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

A Study on the Mechanical Properties of Nuclear Fuel Cladding Materials (원자로용 핵연료 피복재의 인장특성에 관한 연구)

  • Bae, Bong-Kook;Song, Chun-Ho;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.231-238
    • /
    • 2003
  • The fuel of light water reactor is used for several years under high temperature and pressure, so it needs to be clad with high corrosion resistance material. The cladding materials must have the characteristics of low absorption of a neutron and high corrosion resistance. Zircaloy-2 in Boiling Water Reactor, Zircaloy-4 in Pressurized Water Reactor have been used as cladding materials and Zirlo has been developed as the material for preventing the corrosion. If the fracture of the cladding tube occurs during operation, it will cause the economic loss to shut down and replace the system. So it is needed to evaluate the integrity of the cladding materials. In this paper, the tensile characteristics of the cladding materials were investigated for the basic research of fracture characteristics. Also the residual stress was analyzed to compare the tube type(original type) specimen and the flattened type specimen.

A Study on Mechanical Properties of Fuel Cladding Materials (원자로용 핵연료 피복재의 인장특성에 관한 연구)

  • Bae, Bong-Kook;Song, Chun-Ho;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.489-494
    • /
    • 2001
  • The fuel of light water reactor used far several years at high temperature and pressure, so it needs to clad with high corrosion resistance material. The cladding materials need low absorption of a neutron and high corrosion resistance. Cladding materials used Zircaloy-2 in Boiling Water Reactor, Zircaloy-4 in Pressurized Water Reactor and Zirlo has good for long term corrosion. If fracture of cladding tube occured during operation, it caused disaster. So it is needed to estimate of integrity fur cladding materials. In this paper, tension characteristics of cladding materials are investigate which is basic research far fracture characteristic. Also analysis of residual stress effect between tube type(original type) specimen and flattened type specimen.

  • PDF

Power cost evaluation of 350 MWe nuclear power plant (350MWe 원자력 발전소의 발전원가 추정)

  • 노윤래
    • 전기의세계
    • /
    • v.16 no.4
    • /
    • pp.41-49
    • /
    • 1967
  • This paper covers an estimation and analysis of generating cost of 350MWe nuclear power plant using a pressurized water reactor on the assumption that such a nuclear power plant would be constructed in Korea in or around 1970. For the evaluation of this generating cost, an extensive study has been conducted based on the current information on operating and costing parameters of light water reactors, particularly those of pressurized water reactors. Based on this study, a total generating cost of 7.29 Mills/Kwh was evaluated by operating the plant at 80% plant factor. For this calculation, a steady state method was introduced. It is considered, therefore, that a total generating cost in the beginning of plant operation would be a little higher than 7.29 Mills/Kwh, which has been calculated in the state of equilibrium.

  • PDF