• Title/Summary/Keyword: Pressure-rise

Search Result 987, Processing Time 0.021 seconds

A Study on the Explosion Characteristics of City Gas (도시가스의 폭발 특성에 관한 연구)

  • 최재욱;목연수;박승호
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.109-114
    • /
    • 2001
  • Explosive characteristics of the city gas were determined by using the gas explosion apparatues. The explosive range is determined between lower explosive limit of 5.0% and upper explosive limit of 15.3% at atmosphere and even though the oxygen concentration is decreased, lower explosive limit is not changed, but upper explosive limit is rapidly decreased. The minimum oxygen for combustion is determined 10%. The maximum explosion pressure is determined 5.72$\textrm{cm}^2$ and the maximum rate of explosion pressure rise is oxygen concentration of 12% to determined 160.12$\textrm{cm}^2{\cdot}$sec.

  • PDF

Effects of Suction Air Humidity on the Combustion and Exhaust Emissions Characteristics in Diesel Engine (디젤기관에 있어서 흡기습도 변화가 연소 특성과 배기배출물 특성에 미치는 영향)

  • 임재근;김동호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.421-426
    • /
    • 2000
  • A study on the combustion and exhaust emissions characteristics of diesel engine with various suction air humidity is performed experimentally. In this paper, suction air humidity is changed from RH 50% to RH 90%, the experiments are performed at engine speed 1800rpm, and main measured parameters are cylinder pressure, fuel consumption rate, CO, HC, NOx and Soot emissions etc. Increase of suction air humidity from RH 50% to RH 90% does not effect specific fuel consumption, decreases maximum pressure in cylinder, ratio of maximum pressure rise and net heat release, and delays ignition timing. Also, that increases CO and HC emissions, decreases NOx emissions, but does not constant in changing tendency on emission.

  • PDF

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.

Characteristics of Leakage Flow on Regenerative Blower and Leakage-reducing Design for Performance Enhancement (재생형 블로워의 누설유동 특성과 누설유량 저감을 통한 성능 향상)

  • Choi, Min-Ho;Kim, Young-Hoon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • Regenerative blower is suitable for hydrogen recirculation in fuel cell vehicle due to its capability of high pressure rise in single stage. Numerical models were applied to investigate inner gap leakage flow characteristics. A leakage flow in the inner gap is dominantly affected by pressure gradient. Therefore a blower with concentric channel type was suggested as one of modified models for reducing the inner gap pressure gradient. Also numerical results such as pressure rise, efficiency, leakage flow rate and torque were compared between modified and reference models. The performance of concentric channel type was improved as a result of reduced leakage flow.

Investigation into the Causes of Rupturing Ammonia-filled Cylinders (액상 암모니아 충전 용기의 파열 원인 분석)

  • BYOUNGIL JEON;CHANGHYUP PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.451-459
    • /
    • 2024
  • This paper quantitatively analyzes the causes of ammonia-filled- cylinder rupture based on Tait equation and the safety guidelines, focusing on liquid expansion, internal temperature, and overfilling. When there exists a safety volume, i.e., gas-occupied volume within the ammonia cylinder, the internal pressure due to temperature rise corresponds to the vapor pressure at that temperature, with an approximate circumferential stress increase of 1.43 MPa/℃. In the absence of the safety volume, the internal pressure due to temperature rise matches the pressure of the compressed liquid ammonia at that temperature, and the resulting circumferential stress gradient in the cylinder shell is approximately 55.94 MPa/℃.

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

The Effect of Changes in Polymerization Conditions of Orthodontic Acrylic Resin on Maximum Load (Orthodontic Acrylic Resin의 중합조건 변화가 최대하중에 미치는 영향)

  • Lee, Gyu Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Purpose: In order to find out the impact of changes in polymerization conditions of orthodontic acrylic resin on maximum load. Methods: While maintaining mixing ratio 3:1 of polymer and monomer in spray-on way in the production condition of polymerization temperature $25^{\circ}C$ or $37^{\circ}C$ for 10 minutes or 30 minutes of polymerization time by pressure $3kfg/cm^2$ or $6kfg/cm^2$ in the lab maintaining $25^{\circ}C$ of room temperature, the change in maximum load rise rate was tested by producing 5 acrylic resin specimens for orthodontics per group to meet the standards of $25mm{\times}2mm{\times}2mm$ and using INSTRON with the 3rd bar 2mm in diameter and parallel support bending device of $15{\pm}0.1mm$ as test equipment showing 30.00mm/min of crosshead speed, $50{\pm}16$ N/min of load ratio in the laboratory of $24^{\circ}C$ room temperature and as a result, the following results were obtained. Results: 1. When increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, maximum load was lowered by -4.285%. 2. When increasing polymerization time from 10 minutes to 30 minutes, maximum load rose by 3.848%. 3. When increasing polymerization temperature from $27^{\circ}C$ to $37^{\circ}C$, maximum load rose by 5.854%. Conclusion: Considering the above test results that polymerization time and polymerization temperature when polymerizing acrylic resin for orthodontics according to changes in working conditions had an impact on the rate of rise of maximum load values but the rate of rise was lowered when increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, we came to a conclusion that high pressure more than necessary does not affect the rate of rise of maximum load.

Effects on intraventricular norepinephrine on blood pressure and heart rate of rabbits (측뇌실내(側腦室內) Norepinephrine의 가토심박(家兎深博) 급(及) 혈압(血壓)에 미치는 영향(影響))

  • Shin, Seung-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.1 no.1 s.1
    • /
    • pp.53-61
    • /
    • 1965
  • Effects of intraventricular norepinephrine (NE) on rabbit blood pressure and heart rate were investigated. 1) Blood pressure was little affected by small doses of NE (below $500{\mu}g$) but showed marked rise by 1 mg. 2) Heart rate was decreased by intraventriccular NE $(200{\sim}500{\mu}g)$. One mg of NE caused less pronounced bradycardia than with smaller doses. The bradycardia could not be observed in vagotomized or atropinized animals. 3) Intraventricular NE potentiated reflexive bradycardia produced by 5-hydroxytryptamine. 4) Cord-sectioned rabbit showed different responses; the smaller doses $(100{\sim}200{\mu}g)$ produced transitory bradycardia and depression of blood pressure, which followed by tachycardia and pressure rise. The transitory bradycardia and depressor effects were not observed in cord-sectioned and vagotomized rabbit. 5) Treatment of animals with reserpine, guanethidine and hexamethonium changed the effects of intraventricular NE on blood pressure, i.e., in these cases the smaller doses of NE caused maked elevation of blood pressure. 6) From these observations it was inferred that central NE caused stimulation of cardioinhibitory and vasomotor center. The former seemed to be more sensitive to NE than the latter. Susceptibility of the vasomotor center to NE seemed to be influenced by peripheral sympathetic tone.

  • PDF

Wind flow characteristics and their loading effects on flat roofs of low-rise buildings

  • Zhao, Zhongshan;Sarkar, Partha P.;Mehta, Kishor C.;Wu, Fuqiang
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.25-48
    • /
    • 2002
  • Wind flow and pressure on the roof of the Texas Tech Experimental Building are studied along with the incident wind in an effort to understand the wind-structure interaction and the mechanisms of roof pressure generation. Two distinct flow phenomena, cornering vortices and separation bubble, are investigated. It is found for the cornering vortices that the incident wind angle that favors formation of strong vortices is bounded in a range of approximately 50 degrees symmetrical about the roof-corner bisector. Peak pressures on the roof corner are produced by wind gusts approaching at wind angles conducive to strong vortex formation. A simple analytical model is established to predict fluctuating pressure coefficients on the leading roof corner from the knowledge of the mean pressure coefficients and the incident wind. For the separation bubble situation, the mean structure of the separation bubble is established. The role of incident wind turbulence in pressure-generation mechanisms for the two flow phenomena is better understood.

Ridge and field tile aerodynamics for a low-rise building: a full-scale study

  • Tecle, Amanuel;Bitsuamlak, Girma T.;Suskawang, Nakin;Chowdury, Arindam Gan;Fuez, Serge
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.301-322
    • /
    • 2013
  • Recent major post-hurricane damage assessments in the United States have reported that the most common damages result from the loss of building roof coverings and subsequent wind driven rain intrusion. In an effort to look further into this problem, this paper presents a full-scale (Wall of Wind --WoW--) investigation of external and underneath wind pressures on roof tiles installed on a low-rise building model with various gable roofs. The optimal dimensions for the low-rise building that was tested with the WOW are 2.74 m (9 ft) long, 2.13 m (7 ft) wide, and 2.13 m (7 ft) high. The building is tested with interchangeable gable roofs at three different slopes (2:12; 5:12 and 7:12). The field tiles of these gable roofs are considered with three different tile profiles namely high (HP), medium (MP), and low profiles (LP) in accordance with Florida practice. For the ridge, two different types namely rounded and three-sided tiles were considered. The effect of weather block on the "underneath" pressure that develops between the tiles and the roof deck was also examined. These tests revealed the following: high pressure coefficients for the ridge tile compared to the field tiles, including those located at the corners; considerably higher pressure on the gable end ridge tiles compared to ridge tiles at the middle of the ridge line; and marginally higher pressure on barrel type tiles compared to the three-sided ridge tiles. The weather blocking of clay tiles, while useful in preventing water intrusion, it doesn't have significant effect on the wind loads of the field tiles. The case with weather blocking produces positive mean underneath pressure on the field tiles on the windward side thus reducing the net pressures on the windward surface of the roof. On the leeward side, reductions in net pressure to a non-significant level were observed due to the opposite direction of the internal and external pressures. The effect of the weather blocking on the external pressure on the ridge tile was negligible.