DOI QR코드

DOI QR Code

Investigation into the Causes of Rupturing Ammonia-filled Cylinders

액상 암모니아 충전 용기의 파열 원인 분석

  • BYOUNGIL JEON (Department of Integrative Engineering for Hydrogen Safety, Kangwon National University) ;
  • CHANGHYUP PARK (Department of Integrative Engineering for Hydrogen Safety, Kangwon National University)
  • 전병일 (강원대학교 수소안전융합학과) ;
  • 박창협 (강원대학교 수소안전융합학과)
  • Received : 2024.08.02
  • Accepted : 2024.08.27
  • Published : 2024.08.30

Abstract

This paper quantitatively analyzes the causes of ammonia-filled- cylinder rupture based on Tait equation and the safety guidelines, focusing on liquid expansion, internal temperature, and overfilling. When there exists a safety volume, i.e., gas-occupied volume within the ammonia cylinder, the internal pressure due to temperature rise corresponds to the vapor pressure at that temperature, with an approximate circumferential stress increase of 1.43 MPa/℃. In the absence of the safety volume, the internal pressure due to temperature rise matches the pressure of the compressed liquid ammonia at that temperature, and the resulting circumferential stress gradient in the cylinder shell is approximately 55.94 MPa/℃.

Keywords

Acknowledgement

이 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP), 한국지질자원연구원(KIGAM), 국토교통부/국토교통과학기술진흥원(MOLIT)의 지원을 받아 수행한 연구의 결과물입니다(No. 20224000000080, 20212010200020, GP2021-011, RS-2022-00143541).

References

  1. Korea Institute of Energy Research (KIER), "Carbon neutral fuels: ammonia policy and industry trends", Climate Technology Brief - Climate Technology Trend, Vol. 2021, 2021, pp. 9-21. Retrieved from https://www.kier.re.kr/tpp/energy/E/list?pageNum=2&rowCnt=10&menuId=MENU00965&siteId=&schEnergyType=E1&schText=.  10&menuId=MENU00965&siteId=&schEnergyType=E1&schText=
  2. K. Kim and C. Park, "The roles of energy resources engineering for the hydrogen economy", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 60, No. 4, 2023, pp. 265-276, doi: https://doi.org/10.32390/ksmer.2023.60.4.265. 
  3. International Energy Agency (IEA), "Net zero roadmap: a global pathway to keep the 1.5℃ goal in reach", IEA, 2023, pp. 226. Retrieved from https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach. 
  4. C. L. Yaws, "Matheson gas data book", 7th ed, McGraw-Hill Professional, USA, 2001, pp. 982. 
  5. A. N. Vadysinghe, U. Attygalle, E. M. K. B. Ekanayake, and E. G. I. A. Dharmasena, "Ammonia exposure: a review of six cases", The American Journal of Forensic Medicine and Pathology, Vol. 42, No. 4, 2021, pp. 373-378, doi: https://doi.org/10.1097/PAF.0000000000000690. 
  6. Korea Gas Safety Corporation (KGSC), "Gas Accident yearbook 2016", KGSC, 2022. Retrieved from https://www.kgs.or.kr/kgs/abca/board.do. 
  7. F. Ren, "The causes of explosion failure of liquid ammonia cylinder", Journal of Physics: Conference Series, Vol. 2566, 2023, pp. 012080, doi: https://doi.org/10.1088/1742-6596/2566/1/012080. 
  8. M. N. Haque and E. Haque, "Effect of temperature on failure of gas cylinders", Journal of Materials Engineering and Performance, Vol. 5, 1996, pp. 34-38, doi: https://doi.org/10.1007/BF02647266. 
  9. Ministry of Trade, Industry and Energy, "High-pressure gas safety control act", Korean Law Information Center, 2021. Retrieved from https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EA%B3%A0%EC%95%95%EA%B0%80%EC%8A%A4%EC%95%88%EC%A0%84%EA%B4%80%EB%A6%AC%EB%B2%95. 
  10. Korea Gas Safety Code (KGS), "Facility/technical/inspection/ supervision/safety assessment code for production of high-pressure gases (KGS FP112)", KGS, 2021, pp. 142. Retrieved from https://cyber.kgs.or.kr/codesrc/kgscode_pdf/2021/FP112_210112.pdf;cyberJSESSIONID=A570GpVsaEOhUB_9cuD7oR7l5-0un-t9yobL-3NdBT170_wFulXl!-1408393163!NONE. 
  11. B. J. Goodno and J. M. Gere, "Mechanics of materials", 9th ed, Cengage Learning, USA, 2017, pp. 1184. 
  12. G. H. Thomson, K. R. Brobst, and R. W. Hankinson, "An improved correlation for densities of compressed liquids and liquid mixtures", AlChE Journal, Vol. 28, No. 4, 1982, pp. 67 1-676, doi: https://doi.org/10.1002/aic.690280420. 
  13. W. T. Smith Jr, S. Greenbaum, and G. P. Rutledge, "Correlation of critical temperatures with thermal expansion coefficients of organic liquids", The Journal of Physical Chemistry, Vol. 58, No, 5, 1954, pp. 443-447, doi: https://doi.org/10.1021/j150515a016.