• Title/Summary/Keyword: Pressure-area curve

Search Result 121, Processing Time 0.024 seconds

Evaluation of spatial pressure distribution during ice-structure interaction using pressure indicating film

  • Kim, Hyunwook;Ulan-Kvitberg, Christopher;Daley, Claude
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.578-597
    • /
    • 2014
  • Understanding of 'spatial' pressure distribution is required to determine design loads on local structures, such as plating and framing. However, obtaining a practical 'spatial' pressure distribution is a hard task due to the sensitivity of the data acquisition frequency and resolution. High-resolution Pessure-Idicating Flm (PIF) was applied to obtain pressure distribution and pressure magnitude using stepped crushing method. Different types of PIF were stacked at each test to creating a pressure distribution plot at specific time steps. Two different concepts of plotting 'spatial' pressure-area curve was introduced and evaluated. Diverse unit pixel size was chosen to investigate the effect of the resolution in data analysis. Activated area was not significantly affected by unit pixel size; however, total force was highly sensitive.

A Study on the Characteristics of Consolidation of Soils (I) (The Influence of Pre-consolidation Load of Soils on Consolidation Characteristics) (압밀특성에 관한 연구 (I) (선행하중이 압밀특성에 주는 영향))

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4242-4250
    • /
    • 1976
  • The determination of the pre-consolidation load known to have a great effect on the consolidation characteristics of the soil have been researched and discussed in detail by many other researchers. A study was undertaken to investigate and compare the effect of pre-consolidation loads on the coefficient of permeability and the consolidation characterisics of soil through the consolidation test on the three types of soil samples. The results of this study are follows; 1. Large compression index is dependent on initial void ratio of the sample being used and the pressure-void ratio curve shows a curved linear relationship in over-consolidated area but a linear relationship in normally consolidated area.2. Settlement-time curve is S-shaped where the pressure is larger than pre-consolidation load and regardless of over-burden pressure, it is a similar straight line respectively in the secondary consolidation area. 3. Primary consolidation ratio of the sample increases almost linearly with the increase of over-burden pressure but the coefficient of volume compressibility decreases linearly with the increase of it. 4. Time factor of a certain degree of consolidation increases with over-burden pressure but the coefficient of consolidation decreases with it in over-consolidated area. There is a linear relationship between them in normally consolidated area. 5. The void ratio of completion point of primary consolidation decreases linearly with over-burden pressure. 6. The coefficient of permeability of sample decreases linearly with over-burden pressure in normally consolidated area, also it increases linearly with increment of the void ratio of the sample.

  • PDF

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

Evaluations on the Characteristics of Pressure Drop f3r the Design of Intravascular Artificial Lung Assist Device (혈관 내 폐 보조장치 설계를 위한 압력손실 특성 평가)

  • 김기범;권대규;박재관;정경락;이삼철
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.20-28
    • /
    • 2003
  • In this study, we try to formularize simultaneous equations to make a prediction about pressure drop for designing intravascular artificial lung assist device. Designing parameters to predict the effect of pressure drop and designed modules under various conditions were studied through an experimental modeling before inserting the artificial lung assist device into as venous. We measured pressure drop in various number of hollow fiber membranes, when the inside diameter of shell is fixed in 3 cm, and tried to develope the prediction equations by curve fitting based on the correlation between the experimental pressure drop and the device frontal area or packing density. The results showed that pressure drop increased with 2nd order functional formula as the liquid flow rate, the frontal area, and the packing density increased. Also, we can estimate the pressure drop as a function of the frontal area or packing density. The pressure drop obtained from the experiment was similar to that from the equation, confirming the usefulness of the equation.

Behavior of Excessive Pore Water Pressure with Embankment on Soft Ground (연약지반의 성토에 따른 과잉간극수압의 거동)

  • 김지훈;강예묵;이달원;임성훈
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.588-593
    • /
    • 1999
  • This study were performed to investigated the behavior of excessive pore water pressure with embankment of soft clay. The dissipation behavior of excessive pore water pressure in the improved and non-improved area was used to compare and alyze with lateral displacement , and to investigated the applicability of the methods for stability evaluatio of soft clay. The behavior of excess pore water pressure could be used to the fundamental data for stability evaluation, and the evaluation of the stability of embankment was recommended to use the indlination of curve rather than critical line.

  • PDF

Field measurement of local ice pressures on the ARAON in the Beaufort Sea

  • Lee, Tak-Kee;Lee, Jong-Hyun;Kim, Heungsub;Rim, Chae Whan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.788-799
    • /
    • 2014
  • This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel "ARAON" in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of $0.28m^2$. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I) (디젤분무특성에 관한 실험적 연구(I))

  • 박호준;장영준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF

Evaluation of Fracture Toughness considering Constraint Effect of Reactor Pressure Vessel Nozzle (원자로압력용기 노즐부 구속효과를 고려한 파괴인성 평가)

  • Kweon, Hyeong Do;Lee, Yun Joo;Kim, Dong Hak;Lee, Do Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.

Development of prediction model for pressure loss and cut-size of cyclone separator depend on wall curvature (사이클론 집진기의 벽면구배에 따른 압력손실과 컷-사이즈 변화 예측 모델 개발)

  • Heo, Kwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2676-2681
    • /
    • 2008
  • In previous studies, Convex cyclone are proposed to reduce pressure loss which are design cyclone wall with a single continuous curve. Studies about a prediction model for pressure loss and cut-size has focused on conventional cylinder-on-con cyclone. Therefore, the models do not perform well for uncommon design. In this study, a predict model for pressure loss and cut-size depend on cyclone wall curvature are developed. The tangential velocity below vortex-finder is obtained with consideration about friction area and momentum loss on the cyclone wall, and with this the variation of vortex-core and core velocity is obtained. Pressure loss is predicted using a Rankine vortex hypothesis. The prediction results are well agreed with experiments and CFD results.

  • PDF

A Comparative Study on the Predictive Validity among Pressure Ulcer Risk Assessment Scales (욕창발생위험사정도구의 타당도 비교)

  • 이영희;정인숙;전성숙
    • Journal of Korean Academy of Nursing
    • /
    • v.33 no.2
    • /
    • pp.162-169
    • /
    • 2003
  • Purpose: This study was to compare the predictive validity of Norton Scale(1962), Cubbin & Jackson Scale(1991), and Song & Choi Scale(1991). Method: Data were collected three times per week from 48~72hours after admission based on the four pressure sore risk assessment scales and a skin assessment tool for pressure sore on 112 intensive care unit(ICU) patients in a educational hospital Ulsan during Dec, 11, 2000 to Feb, 10, 2001. Four indices of validity and area under the curve(AUC) of receiver operating characteristic(ROC) were calculated. Result: Based on the cut off point presented by the developer, sensitivity, specificity, positive predictive value, negative predictive value were as follows : Norton Scale : 97%, 18%, 35%, 93% respectively; Cubbin & Jackson Scale : 89%, 61%, 51%, 92%, respectively; and Song & Choi Scale : 100%, 18%, 36%, 100% respectively. Area under the curves(AUC) of receiver operating characteristic(ROC) were Norton Scale .737, Cubbin & Jackson Scale .826, Song & Choi Scale .683. Conclusion: The Cubbin & Jackson Scale was found to be the most valid pressure sore risk assessment tool. Further studies on patients with chronic conditions may be helpful to validate this finding.