• Title/Summary/Keyword: Pressure-Drop

Search Result 2,354, Processing Time 0.03 seconds

Pressure Drop in a Circular Pipe of Waste Collection Piping System (쓰레기 관로 이송 시스템의 관로 압력강하 평가)

  • Jang, Choon-Man;Lee, Sang-Yun;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.55-60
    • /
    • 2007
  • This paper describes an evaluation method of pressure drop in a circular pipe of waste collection piping system. Accurate pressure drop in a piping system is very important to determine the capacity of turbo blower, which is one of the main elements in the system. Three-dimensional Navier-Stokes analysis is introduced to analyze the pressure drop in the piping system. Organic waste is selected and modeled using the result of site survey performed in an apartment area. Evaluation method of pressure drop used In the present numerical simulation is performed in the shortened pipe line prior to the calculation of the real system. Throughout the numerical simulation, pressure drop in a waste pipe is obtained and compared to the value determined by analytical method. The pressure drop obtained by numerical simulation has a good agreement with that of the analytic method. It is noted that present evaluation method is effective to determine a pressure drop in the piping system. Detailed flow characteristics inside the pipe line are also analyzed and discussed.

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.

An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

Safety Estimation of High Pressure Drop Control Valve for Offshore Structures (해양플랜트용 고압.고차압 제어밸브의 구조 안전성 평가)

  • Kim, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.553-558
    • /
    • 2011
  • This study have goal with conceptual design for offshore structures of high pressure drop control valve for localization valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25. In order to localize the Offshore structures high pressure drop control valve. This study is numerical analysis for zambil offshore project of high pressure drop control valve. The solver which ANSYS workbench used for offshore structures analysis. The working fluids assumed the glycerin(C3H8O3). The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and disk structure. In this study a multi-disk of high pressure drop control valve is designed and manufactured. Then, the flow rate and high pressure dorp of fluids flowing in the high pressure drop control valve is CAE. So, this system can be easily substituted for the existing zambil offshore project system. Finally, safety estimation for trim design of high pressure drop control valve for offshore structures.

Experimental Study on Flow Patterns and Pressure Drop Characteristics of Ice Slurry in Small Size Pipe (2) (소구경 배관내 아이스슬러리의 유동형상 및 압력강하 특성에 관한 실험적 연구(2))

  • 이동원;윤찬일;주문창
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Pressure drop were experimentally investigated for ice slurry flowing in the acrylic pipes with inner diameter of 24 mm. Ice slurry was made from 6.5% ethylene glycol-water solution, and the pipes is consisted of horizontal, vertical (upward and downward) and $90^{\circ}$ elbow pipe. The ice Packing factor (IPF) and the flow rate of the experiments were varied from 0 to 30% and from 5 to 70kg/min respectively The measured pressure drop in various pipe positions were compared with those for the solution flow (IPF=0). The pressure drop was larder than that for solution flows as the IPF increased when the flow rate was low or very high. Sharp increases in pressure drop were observed for the cases when IPF is more than 70% in horizontal and vertical pipes, whereas the pressure drop increased with the IPF simultaneously in an elbow pipe.

A Study on Pressure Drop in Two-Phase Flow Boiling of Refrigerants in Horizontal Tube (수평 전열관내 냉매의 이상유동 압력강하에 관한 연구)

  • 임태우;김준효
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.510-517
    • /
    • 2003
  • An experimental study on the pressure drop during flow boiling for pure refrigerants R134a and Rl23, and their mixture was carried out in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6 MPa and in the ranges of heat flux 5~50 kW/m$^2$, vapor quality 0~100 percent and mass velocity of 150~600 kg/m$^2$s. Generally, the two-phase frictional multiplier is used to predict the frictional pressure drop during the two-phase flow boiling. The obtained results have been compared to the existing various correlations for the two-phase multiplier. Also, the frictional pressure drop was compared to a few available correlations; The Lockhart-Martinelli correlation considerally overpredicted the frictional pressure drop data for mixture as well as pure components in the entire mass velocity ranges employed in the present study, while the Chisholm correlation underpredicted the present data. The Friedel correlation was found to satisfactorily correlate the frictional pressure drop data except for a low quality region.

Pressure drop in packed beds with horizontally or vertically stratified structure

  • Li, Liangxing;Xie, Wei;Zhang, Zhengzheng;Zhang, Shuanglei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2491-2498
    • /
    • 2020
  • The paper concentrates on an experimental study of the pressure drop in double-layered packed beds formed by glass spheres, having the configuration of horizontal and vertical stratification. Both single-phase and two-phase flow tests are performed. The pressure drop during the test is recorded and the measured data are compared with those of homogeneous beds consisting of mono-size particles. The results show that for the horizontally stratified bed with fine particles atop coarse particles, the pressure drop in top layer is found higher than those of homogenous bed consisting of the same smaller size particles, while the measured pressure drop of bottom part is similar with those of similar homogenous bed. But for the homologous bed with upside-down structure, the stratification has little or no effect on the pressure drop of the horizontally stratified bed, and the pressure drop of each layer is almost same as that of homogeneous bed packed with corresponding spheres. Additionally, in vertically stratified bed, the pressure drops on the left and right side is almost equal and between those in homogeneous beds. It is speculated that vertically stratified structure may lead to lateral flow which redistributes the flow rate in different parts of packed bed.

A Study on Heat Transfer and Pressure Drop in Flow Boiling of Binary Mixtures in a Uniformly Heated Horizontal Tube (균일하게 가열되는 수평전열관내 냉매의 유동 비등열 전달과 압력 강하 특성에 관한 연구)

  • LIM, Tae-Woo;PARK, Jong-Un;KIM, Jun-Hyo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.14 no.2
    • /
    • pp.177-190
    • /
    • 2002
  • An experimental study was carried out to make clear heat transfer characteristics in flow boiling of binary mixtures of refrigerants R134a and R123 in a uniformly heated horizontal tube. Experiments were run at a pressure of 0.6 MPa both for pure fluids and mixtures in the ranges of heat flux $10{\sim}50{kW/m}^2$, vapor quality 0~100% and mass flux 150-600 $kg/m^2s$. Heat transfer coefficients of mixtures were reduced compared to the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Total pressure drop during two-phase flow boiling in a horizontal tube consists of the sum of two components, that is, the frictional pressure drop and pressure drop due to acceleration. The frictional pressure drop is the most difficult component to predict, and makes the most important contribution to the total pressure drop. On the other hand, the acceleration pressure drop resulting from the variation of the momentum flux caused by phase change is generally small as compared to the frictional pressure drop. There is no significant difference in measured pressure drop between mixtures and pure fluids. The correlation of Martinelli and Nelson predicted most of the present data both for pure and mixed refrigerants within 30%.

The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System (청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System (입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석)

  • Lee, Jae-Keun;Ku, Jae-Hyun;Kwon, Soon-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.