• Title/Summary/Keyword: Pressure tank

Search Result 840, Processing Time 0.03 seconds

System design of an air-cooled 3-stage reciprocating air compressor and performance testing (공랭식 3단 왕복동 공기압축기의 시스템 설계 및 성능시험)

  • Lee, An-Seong;Kim, Yeong-Cheol;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1380-1391
    • /
    • 1997
  • A 150 m$^{3}$/hr, 30 kg/cm$^{2}$, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially the volumetric efficiency. Temperature and stress analyses of the cylinder are performed using FEM modelings. The dynamics of valve system is analyzed and stress at the valve seat due to valve impact is evaluated. To reduce friction loss and wear at the compressor engine system, tribological design practices are suggested. Fin-type coolers are designed to dissipate generated compression heat at each stage. Finally, a prototype is manufactured and performance test is carried out utilizing an air tank. Performance results are compared to the design targets, other foreign specifications, and some quality standards.

Gun System Vibration Analysis using Flexible Multibody Dynamics (유연 다물체 동역학을 이용한 포신-포탑시스템의 진동해석)

  • 김성수;유진영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.166-172
    • /
    • 1997
  • In order to find out relationship between hit probability and gun firing of a moving tank, a turret and flexible gun system model has been developed using the recursive flexible multibody dynamics. For a firing simulation model, nodal coordinates for a finite element model of a flexible gun have been employed to include traverse loads to the gun tube due to moving bullet and ballistic pressure. Modal coordinates are also used to represent the motion induced gun vibration before a firing occurs. An efficient switching technique from modal equations to nodal equations has been introduced for an entire gun firing simulation with rotating turret.

  • PDF

Microcontroller-Based Liquid Level Control Modeling

  • Dumawipata, Teerasilapa;Unhavanich, Sumalee;Tangsrirat, Worapong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.82.3-82
    • /
    • 2001
  • This work presents a design technique for the implementation of the liquid level control system by based on the use of a single-chip microcontroller. The proposed model system offers the following attractive features : (1) application of the pressure transducer for sensing the height of liquid in tank (2) using the obtained liquid level for defining on-off condition of the water pump (3) the liquid values were controlled by using stepping motors for controlling of 57 points (4) can set up by using manual control or automatic control (5) can monitor and display the process status either on microcontroller-based control board or on the computer via RS232 serial-port. Experimental results have been employed to show the effectiveness ...

  • PDF

The test facility for propellant feeding system of liquid propulsion system (액체추진기관 추진제 공급계 시험설비)

  • Kwon Oh-Sung;Na Han-Bee;Lee Joong-Youp;Jeong Yong-Gap;Cho Nam-Kyung;Kil Gyoung-Sub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • Propellant feeding system is the system to satisfy propellant feeding requirements(mass flow rate, pressure, temperature) at engine inlet of launch vehicle. Propellant feeding test facility is being constructed for the development scheme of pressurization system, processing in tank, propellant piping system, and flow control system that are main technologies in order to develope propellant feeding system. This paper introduces the propellant feeding test facility being constructed in KARI.

  • PDF

Role of membrane forces in seismic design of reinforced concrete liquid storage structures

  • Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.533-543
    • /
    • 2000
  • To prevent major cracking and failure during earthquakes, it is important to design reinforced concrete liquid storage structures, such as water and fuel storage tanks, properly for the hydrodynamic pressure loads caused by seismic excitations. There is a discussion in recent Codes that most of the base shear applied to liquid containment structures is resisted by inplane membrane shear rather than by transverse flexural shear. The purpose of this paper is to underline the importance of the membrane force system in carrying the base shear produced by hydrodynamic pressures in both rectangular and cylindrical tank structures. Only rigid tanks constrained at the base are considered. Analysis is performed for both tall and broad tanks to compare their behavior under seismic excitation. Efforts are made to quantify the percentage of base shear carried by membrane action and the consequent procedures that must be followed for safe design of liquid containing storage structures.

CFD simulations of a performance-scaled wind turbine

  • Ye, Maokun;Chen, Hamn-Ching;Koop, Arjen
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.247-265
    • /
    • 2022
  • In the present study, we focus on the CFD simulations for the performance and the rotor-generated wake of a model-scale wind turbine which was designed for wave tank experiments. The CFD simulations with fully resolved rotor geometry are performed using MARIN's community-based open-source CFD code ReFRESCO. The absolute formulation method (AFM) is leveraged to model the rotating wind turbine. The k - ω SST turbulence model is adopted in the incompressible Reynolds Averaged Navier-Stokes (RANS) simulations. First, the thrust and torque coefficients, CT and CP, are calculated at different Tip Speed Ratios (TSR), and the results are compared against the experimental data and previous numerical results. The pressure distribution of the turbine blades at the 70% span is obtained and compared to the results obtained by other tools. Then, a verification study aiming at quantifying the discretization uncertainty of the turbine performance with respect to the grid resolution in the wake region is performed. Last, the rotor-generated wake at the TSR of 7 is presented and discussed.

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Development of Fertilizer-Dissolving Apparatus Using Air Pressure for Nutrient Solution Preparation and Dissolving Characteristics (공기를 이용한 양액 제조용 비료용해 장치 개발 및 용해특성)

  • Kim, Sung Eun;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.163-169
    • /
    • 2012
  • We have conducted three experiments to develop a fertilizer-dissolving apparatus used in fertigation or hydroponics cultivation in order to decrease the fertilizer dissolving time and labor input via automation. All of the experiments were conducted twice. In the first experiment, four selected treatments were tested to dissolve fertilizers rapidly. The first treatment was to dissolve fertilizer by spraying water with a submerged water pump, placed in the nutrient solution tank. The water was sprayed onto fertilizer, which is dissolved and filtered through the hemp cloth mounted on the upper part of the nutrient solution tank (Spray). The second treatment was to install a propeller on the bottom of the nutrient solution tank (Propeller). The third treatment was to produce a water stream with a submerged water pump, located at the bottom of the tank (Submerged). Finally, the fourth treatment was to produce an air stream through air pipes with an air compressor located at the bottom of the tank (Airflow). The Spray treatment was found to take the shortest time to dissolve fertilizer, yet it was inconvenient to implement and manage after installation. The Airflow treatment was thought to be the best method in terms of the time to dissolve, labor input, and automation. In the second experiment, Airflow treatment was investigated in more detail. In order to determine the optimal number of air pipe arms and their specification, different versions of 6- and 8-arm air pipe systems were evaluated. The apparatus with 6 arms (Arm-6) that was made of light density polyethylene was determined to be the best system, evaluated on its time to dissolve fertilizer, easiness to use regardless of the lid size of the tank, and easiness to produce and install. In the third experiment, the Submerged and Arm-6 treatments were compared for their dissolving time and economics. Arm-6 treatment decreased the dissolving time by 8 times and proved to be very economic. In addition, dissolving characteristics were investigated for $KNO_3$, $Ca(NO_3)_2{\cdot}4H_2O$, and Fe-EDTA.

Computational Analysis of Parabolic Overtopping Wave Energy Convertor (포물선형 월류파력발전장치에 대한 수치해석)

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.273-278
    • /
    • 2009
  • Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor for collecting the overtopping waves and converting the water pressure head into electric power through the hydro turbines installed in the vertical duct which is fixed in the sea bed. The numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. Several incident wave conditions and shape parameters of the overtopping device are calculated. The straight line type and parabolic type of the sloping arm are compared in the optimal designing investigation of the overtopping characteristics and discharge for OWEC device. The numerical results demonstrate that the parabolic sloping arm is available for wave running up and the overtopping discharge increasing.

  • PDF

TPC Algorithm for Fault Diagnosis of CAN-Based Multiple Sensor Network System (CAN 기반 다중센서 네트워크 시스템의 고장진단을 위한 TPC알고리즘)

  • Ha, Hwimyeong;Hwang, Yuseop;Jung, Kyungsuk;Kim, Hyunjun;Lee, Bongjin;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • This paper proposes a new TPC (Transmission Priority Change) algorithm which is used to diagnose failures of a CAN (Controller Area Network) based network system for the oil tank monitoring. The TPC algorithm is aimed to increase the total amount of data transmission and to minimize the latency for an urgent message by changing transmission priority. The urgency of the data transmission has been determined by the conditions of sensors. There are multiple sensors inside of the oil tank, such as temperature, valve, pressure and level sensors. When the sensors operate normally, the sensory data can be collected through the CAN network by the monitoring system. However when there is a dangerous situation or failure situation happened at a sensor, the data need to be handled quickly by the monitoring system, which is implemented by using the TPC algorithm. The effectiveness of the TPC algorithm has been verified by the real experiments. In addition, this paper introduces a method that people can figure out the condition of oil tanks and also can perform the fault diagnosis in real-time by using transmitted packet data. By applying this TPC algorithm to various industries, the convenience and reliability of multiple sensors network system can be improved.