• Title/Summary/Keyword: Pressure tank

Search Result 840, Processing Time 0.028 seconds

Direction-of-Arrival Estimation for the Ring-Type Multimode Vector Hydrophone based on the Pressure Gradient-Acceleration Relationship (압력 구배-가속도 관계를 이용한 링형 다중모드 벡터 하이드로폰에서의 도래각 추정)

  • Kim, Wan-Jin;Kim, Woo Shik;Bae, Ho Seuk;Joh, Cheeyoung;Seo, Hee-Seon;Choi, Sang Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.66-74
    • /
    • 2015
  • Conventional hydrophones can only measure acoustic pressure. To measure both acoustic pressure and incident direction, various types of vector hydrophones have been researched. In this paper, we deal with a ring-type multimode vector hydrophone divided into 4 elements and present a direction-of-arrival (DoA) estimation method based on the pressure gradient-acceleration relationship. The performance of the presented method is analyzed by the simulation based on the sensor modeling and is verified by the water tank experiment. The proposed method could work under the multi-frequency condition and may be utilized in many applications due to its low computation complexity.

Thermally Stratified Hot Water Storage (태양열의 성층축열과 주택이용에 관한 연구(성층축열))

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.3-12
    • /
    • 1990
  • This paper deals with experimental research to increase thermal storage efficiency of hot water stored in an actual storage tank for solar application. The effect of increased energy input rate due to stratification has been discussed and illustrated through experimental data, which was taken by changing dynamic and geometric parameters. Ranges of the parameters were defined for flow rate, the ratio of diameter to height of the tank and inlet-exit water temperature difference. During the heat storage, when the flow was lower, the temperature difference was larger and the ratio of diameter to height of the tank was higher, the momentum exchange decreased. As for this experiment, when the flow rate was 8 liter/min, the temperature difference was $30^{\circ}C$ and the ratio of diameter to height of the tank was 3, the momentum exchange was minimized resulting in a good thermocline and a stable stratification. In the case of using inlet ports, if the modified Richardson number was less than 0.004, full mixing occured and so unstable stratification occured, which mean that this could not be recommended as storage through thermal stratification. Using a distributor was better than using inlet ports to form a sharp thermocline and to enhance the stratification. It was possible to get storage efficiency of 95% by using the distributor, which was higher than a storage efficiency of 85% obtained by using inlet ports in same operation condition. Furthermore, if the distributor was manufactured so that the mainpipe decreases in diameter toward the dead end to maintain constant static pressure, it might be predicted that further stable stratification and higher storage efficiency are obtainable(ie:more than 95%).

  • PDF

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

A Study on the Probability of BLEVE of Above-ground LP Gas Storage Tanks Exposed to External Fire (지상식 LPG 저장탱크의 외부화재에 의한 BLEVE 가능성 해석)

  • Lee Seung-Lim;Lee Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.19-23
    • /
    • 2003
  • The purpose of this thesis is to investigate the BLEVE probability of LP gas storage tanks which are relatively more dangerous, by the deductive calculating method using the results of Birk's pilot tank test and the required heat capacity of BLEVE. The result that BLEVEs can occur in only above 43.68 percent of liquid filling level under $600^{\circ}C$ of tank pate temperature and $53^{\circ}C$ of inner liquid temperature, was obtained and will be useful for preventing the BLEVE of LP gas storage tanks in fire sites. In addition, this research showed conditions of external leak and fire causing BLEVE, based on 15ton capacity of LP gas tank which has the same specifications as those in Puchon LP gas filling station accident. The result of the calculation is that the minimum pool fire conditions of BLEVE are above 7.2mm equivalent diameter under a liquid release condition and above 17.6mm equivalent diameter under a two-phase release condition. In the end, the result of calculating the pool size corresponding the above conditions using EFFECTS version 2.1, concludes that a minimum of 3.3 meters of diameter and 10.4 meters of height should be needed for BLEVE outbreak.

  • PDF

Study on Phosphorus Removal in the Secondary Effluent by Flotation Using Microbubble Liquid Film System (미세기포 액막화 부상법을 이용한 하수 2차 처리수의 인 제거에 관한 연구)

  • Lee, Shun-Hwa;Kang, Hyun-Woo;Lee, Se-Han;Kwon, Jin-Ha;Jung, Kye-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2012
  • In this study, experiment on phosphorus removal was performed by using microbubble liquid film flotation tank with microbubble module. After dissolving gas and liquid in dissolving tank, microbubble liquid film system created microbubbles in equal size under fixed low pressure. After being passed through $A_2O$ and m-$O_3$ process, secondary treatment wastewater was used as influent in phosphorus removal process. When the T-P concentration of influent was 2.89 mg/L, alum(8%, 30 mg/L) was injected into a microbubble flotation tank, the treatment resulted 94% of T-P removal rate. Remaining T-P concentration was less than 0.2 mg/L, which is in accord with the effluent quality standard. Seasonal variations in water temperature showed no differences in T-P removal property. When the inflow concentration of SS was 1.0 mg/L or more, it served as coagulation nuclei in the coagulation process. In that condition, average T-P removal rate was higher than 97%. When 50% of floated scum was returned, coagulator Al included in scum assisted the injected coagulator and maximized the coagulation efficiency of pollutant. In such treatment, the T-P concentration was measured as 0.18 mg/L and satisfied the outflow water quality standard, which is 0.2 mg/L or less.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Analysis on Volumetric Efficiency and Torque Characteristics Using Inlet Port Pressure in SI Engines (흡기포트압력을 이용한 SI엔진의 체적효율 및 토크 성능 분석)

  • 이영주;홍성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1408-1418
    • /
    • 1992
  • The valve timing and intake system in SI engine is chosen in order to get the maximum performance at the target rpm. This is a compromise and the performance reduction is expected in a certain rpm range. Therefore, to accomplish the possible engine capacity all over the operation ranges, it is required to investigate the effects of intake system and valve timing on engines more thoroughly. In this paper, it was attempted to examine closely the combined effects on the torque and the volumetric efficiency due to the change of valve timing and intake system dimensions. For this, the inlet port pressure was chosen as a primary parameter to represent engine performance characteristics together with surge tank pressure and induction pressure as secondaries. The inlet port pressure was analyzed in connection with both the secondaries and the performance data. Especially the relation between the inlet port pressure and the torque and volumetric efficiency was investigated on the operating conditions. In this experiment, it was acquired that the performances at specific rpm range could be improved by the combinations of valve timing and intake system. Then it was verified that pressure at a intake system contained useful data for the engine performance. By the analysis of inlet port pressure with the others, it was obtained that the properties of the torque and the volumetric efficiency due to the change of valve timing and intake conditions were able to be defined by the average and the maximum inlet port pressures, the pressure near before the intake valve closing(IVC) point as well as the pressure at IVC point during the intake valve opening duration. These results could be applied to almost all over the experimental conditions.

Study on the Safety Analysis on the Cooling Performance of Hybrid SIT under the Station Blackout Accident (발전소 정전사고 시 Hybrid SIT의 냉각성능 평가를 위한 안전해석에 관한 연구)

  • Ryu, Sung Uk;Kim, Jae Min;Kim, Myoung Joon;Jeon, Woo Jin;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.64-70
    • /
    • 2017
  • The concept of Hybrid Safety Injection Tank (Hybrid SIT) proposed by the Korea Atomic Energy Research Institute (KAERI) has been introduced for the purpose of application to the Advanced Power Reactor Plus (APR+). In this study, the SBO situation of the APR+ was analyzed by using the MARS-KS code in order to evaluate whether the operation of the Hybrid SIT has an effect on the cooling performance of the Reactor Coolant System (RCS). According to the analysis, when the actuation valve on the pressure balancing line (PBL) is opened, the Hybrid SIT's pressure rises rapidly, forming equilibrium with the RCS pressure; subsequently, a flow is injected from the Hybrid SIT into the reactor vessel through the direct vessel injection (DVI) line. The analysis showed that it is possible to keep the core temperature below melting temperature during the operation of a Hybrid SIT.

A Study on the Reliability Improvement for Assurance Pressure of Tank Gun Barrel (전차 포신의 보증압력 신뢰성 향상 연구)

  • Kim, Sung Hoon;Park, Young Min;Noh, Sang Wan;Jun, Sang Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.115-122
    • /
    • 2020
  • This study aimed to improve the reliability of the assurance pressure of a gun barrel due to the difference between the US Standard and Korean Standard. In addition, the reliability was found to differ according to the maximum pressure of the Ammunition, so restrictions are expected. During the development of the new bullet, the maximum pressure of the bullet was approximately 3,000 psi higher than the assurance pressure of the gun barrel. To solve this problem, the reliability of the cannon was analyzed when the assurance pressure of the gun barrel increased. First of all, the technical data from overseas were reviewed to check for cases of increased assurance pressure, and tests were performed to determine if it could withstand high pressure through a verification firing test. Finally, the simulation analyzed the stability of the recoil buffer. The study found no abnormal results in all items, suggesting that an increase in the assurance pressure for a gun barrel was possible. This study is expected to be used as basic data for future reliability studies of similar equipment.

Core Technology Development of Low Temperature Fluidity Test System with Composited Fuel Filter (통합연료필터의 저온유동성 시험장치 핵심기술개발)

  • Yun, Suck-Chang;Zhao, Xiang;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.420-426
    • /
    • 2014
  • In this paper, we have implemented the low temperature fluidity test system with the composited fuel filter and heater, which has tested the low temperature fluidity of gasoline, an engine start time, the consumption of electricity and power to evaluate the system performance. The test condition have used the diesel fuel, the normal temperature, the diesel fuel supply pressure $3.4kgf/cm^2$ at $-20{\sim}-30^{\circ}C$, the fuel supply quantization 60 l/H, the setting current 30 A and the voltage $13V_{dc}$. In order to simulate the operation of diesel fuel filter, we will establish the composited fuel filter into test jig, and be filled with chamber tank and filter by a constant flow quantization and pressure. After these, it shall be cold for setting time. And then we have measured the consumption current and power of heater, an operating time and pressure of filter.