• Title/Summary/Keyword: Pressure of refrigerant

Search Result 465, Processing Time 0.021 seconds

Simulation of the flow characteristics of R1234yf flowing through capillary tubes (냉매 R1234yf의 모세관내 유동 특성에 관한 해석적 연구)

  • Kim, Daeyeong;Park, Chasik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6452-6457
    • /
    • 2014
  • R1234yf has been developed as an alternative refrigerant to R134a, which has been associated with global warming. The capillary tubes as expansion valves control the mass flow rate and balance system pressure in the refrigeration cycle. The present numerical model used the governing equations including the law of conservation of mass, momentum, and energy in a capillary tube. The mass flow rate of R1234yf decreased by 47.0% as the capillary tube length was increased from 1 to 4 m. As the inner diameter of the capillary tubes was changed from 1.3 to 1.7 mm, the mass flow rate of R134a and R1234yf increased by 117.9% and 121.0%, respectively. The mass flow rate of the R134a and R1234yf increased by 28.3% and 29.1% with subcooling increasing from 0 to $7^{\circ}C$. In addition, when the inlet temperature of the capillary tubes was changed from 35 to $60^{\circ}C$, the mass flow rate of R134a and R1234yf increased by 31.0% and 45.4%, respectively.

Study on Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Heating Operating Condition (난방운전 조건하에서 $CO_2$ 열펌프용 내부 열교환기의 열전달 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • In order to study the heat transfer, effectiveness and pressure drop of an internal heat exchanger (IHX) for $CO_2$, heat pump under heating condition, the experiment and numerical analysis were performed. Four kinds of IHXs were used. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of IHX on the flow rate of refrigerant, the IHX length, the operating condition of a gas-cooler and an evaporator and the type of IHXs were investigated. With increasing the flow rate, the heat transfer rate increased about 25%. The heat transfer of the micro-channel tube was larger about 100% than that of the coaxial tube. With increasing the IHX length, the heat transfer rate decreased. The low-side pressure drop was larger compared with that of the high-side. And the pressure drop of the microchannel tube was larger about 100% than that of the coaxial tube. With increasing the high-side temperature and decreasing the low-side temperature, the heat transfer rate increased about 3%. From this study, we can see that new correlation on $CO_2$ heat transfer characteristics and tube type is necessary.

Experimental Study of the Heat Transfer Rate of the Plate Fin-Tube Condenser for a Household Refrigerator (냉장고용 판형 핀-관 응축기의 열전달 성능에 관한 실험적 연구)

  • Son, Young-Woo;Lee, Jang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4802-4808
    • /
    • 2014
  • A plate-fin tube type heat exchanger has a lighter weight, approximately 30%, than the conventional circular-fin type condenser of household refrigerator. Because the low weight means low cost, it can have significant effects on the growth of related businesses if similar performance can be guaranteed. To check the possibility of the use of such a plate fin-tube condenser, experimental evaluations were performed in this study. Four different condensers including a conventional circular fin-tube condenser were used for the test. A well designed refrigerant supply system was used to supply similar conditions with a refrigerator, and the heat transfer rate and pressure drops of air side were measured precisely. As a result, the plate fin-tube type condensers showed a lower heat transfer rate of more than 13% than the conventional circular fin-tube type condenser, but the air side pressure drop was reduced and the heat transfer per unit weight was increased. Therefore, it shows the possibility of the use of a plate fin-tube type condenser after optimizing the air flow path and increasing the air flow to make a similar heat transfer rate.

Pool Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a on a Plain Tube (수평관에서 프로판, 이소부탄, BFC134a를 포함한 혼합냉매의 풀비등 열전달계수)

  • Park, Ki-Jung;Baek, In-Cheol;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.955-963
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficients (HTCs) were measured with one nonazeotropic mixture of Propane/Isobutane and two azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube with heat fluxes of $10kW/m^2\;to\;80kW/m^2$ with an interval of $10kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of Propane/Isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with a larger gliding temperature difference. Stephan and $K{\ddot{o}}rner's$ and Jung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/Isobutane and Propane/HFC134a.

Performance Evaluation of a $CO_2$ Heat Pump System for Fuel Cell Vehicles (연료전지 자동차용 이산화탄소 열펌프 시스템의 성능평가)

  • Kim, Sung-Chul;Park, Jong-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The global warming potential (GWP) of $CO_2$ refrigerant is 1/1300 times lower than that of R134a. Furthermore, the size and weight of the automotive heat pump system can decrease because $CO_2$ operates at high pressure with significantly higher discharge temperature and larger temperature change. The presented $CO_2$ heat pump system was designed for both cooling and heating in fuel cell vehicles. In this study, the performance characteristics of the heat pump system were analyzed for heating, and results for performance were provided for operating conditions when using recovered heat from the stack coolant. The performance of the heat pump system with heater core was compared with that of the conventional heating system with heater core and that of the heat pump system without heater core, and thus the heat pump system with heater core showed the best performance among the selected heating systems. On the other hand, the heating performance of two different types of coolant/air heat pump systems with heater core was compared each other at various coolant inlet temperatures. Furthermore, to use exhausted thermal energy through the radiator, experiments were carried out by changing the arrangement of a radiator and an outdoor evaporator, and quantified the heating effectiveness.

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

Simulation for Performance Analysis of a Grain Cooler (곡물냉각기의 성능해석을 위한 시뮬레이션)

  • 박진호;정종훈
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.449-460
    • /
    • 2001
  • This study was carried out to develop a simulation model with EES(Engineering equation solver) for analyzing the performance of a grain cooler. In order to validate the developed simulation model, several main factors which have affected on the performance of the gain cooler were investigated through experiments. A simulation model was developed in the standard vapor compression cycle, and then this model was modified considering irreversibe factors so that the developed alternate model could predict the actual cycle of a grain cooler. The compressor efficiency in vapor compression cycle considering irreversibility much affected on the coefficient of performance(COP). The COP in the standard vapor compression cycle model was greatly as high as about 6.50, but the COP in an alternative model considering irreversibility was as low as about 3.27. As a result of comparison between the actual cycle and the vapor compression cycle considering irreversibility, the difference of pressure at compressor outlet(inlet) was a little by about 48kPa (8.8kPa), the temperatures of refrigerant at main parts of the grain cooler were similar. and the temperature of chilled air was about 8$\^{C}$ in both. The model considering irreversibility could predict performance of the grain cooler. The theoretical period required to chill grain of 1,383kg from the initial temperature 24$\^{C}$ to below 11$\^{C}$ was about 55 hours 30 minutes, and the actual period required in a grain bin was about 58 hours. The difference between the predicted and an actual period was about 2 hours 30 minutes. The cooling performance predicted by the developed model could well estimate the cooling period required to chill the grain.

  • PDF

External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes (낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수)

  • Shim, Yun-Bo;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

Pool Boiling Heat Transfer Coefficients Up to Critical Heat flux on Thermoexcel-E Enhanced Surface (Thermoexcel-E 촉진 표면에서 임계 열유속까지의 풀 비등 열전달계수)

  • Lee, Yo-Han;Kang, Dong-Gyu;Jang, Cheol-Han;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.685-692
    • /
    • 2012
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of different vapor pressure are measured on horizontal Thermoexcel-E square surface of 9.53 mm length. Tested refrigerants are R32, R22, R134a, R152a and R245fa. HTCs are taken from 10 $kW/m^2$ to critical heat fluxes for all refrigerant at $7^{\circ}C$. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool. Test results show that critical heat fluxes(CHFs) of Thermoexcel-E enhanced surface are greatly improved as compared to that of a plain surface in all tested refrigerants. CHFs of all refrigerants on the Thermoexcel-E surface are increased up to 100% as compared to that of the plain surface. The improvement of Thermoexcel-E surface in CHF, however, is lower than that of the low fin surface. HTCs on Thermoexcel-E surface increase with heat flux. But after certain heat flux, HTCs began to decrease due to the difficulty in bubble removal caused by the inherent complex nature of this surface. Therefore, at heat fluxes close to the critical one, sudden decrease in HTCs needs to be considered in thermal design with Thermoexcel-E surface.

Comparative Study on the Properties Estimation of the Constituents of the Natural Gas and Refrigerant Mixtures Between GERG-2004 Model and Peng-Robinson Equation of State (GERG-2004 모델식과 Peng-Robinson 상태방정식을 이용한 천연가스 및 냉매 구성성분들의 물성 비교연구)

  • Kim, Mi-Jin;Rho, Jae-Hyun;Kim, Dong-Sun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.906-918
    • /
    • 2012
  • In this study, we compared with results simulated by EOS(Equation of State) using Peng-Robinson model and GERG-2004 model for estimating vapor pressure, latent heat of vaporation, liquid density, and binary isotherm vapor-liquid equilibrium on pure components composing natural gases. We obtained the simulated results that while EOS using GERG-2004 model is more accurate than EOS using Peng-Robinson model for estimating liquid density, but rather it is less accurate for estimating binary isotherm vapor-liquid equilibrium. On the other hand, the use of Costald model in EOS using Peng-Robinson model for increasing more accuracy to calculate liquid density is almost same as EOS using GERG-2004 model within the error of 1 % compared with experimental data. Also, we confirmed that on the estimation of binary isotherm vapor-liquid equilibrium, EOS using GERG-2004 model is more accurate than EOS using Peng-Robinson model, but they are almost same.