• Title/Summary/Keyword: Pressure material

Search Result 4,556, Processing Time 0.035 seconds

A Study on the Evaporation Behavior of Magnesium Alloy (AM50) Scrap Melt under Reduced Pressure (감압 하에서 마그네슘 합금(AM50) 스크랩 용탕의 증발 거동에 관한 연구)

  • Wi, Chang-Hyun;Hong, Seong-Hun;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.241-247
    • /
    • 2010
  • In order to develop the vacuum distillation process of magnesium alloy scrap, a fundamental study on the evaporation behavior of magnesium alloy (AM50) scrap melt was carried out. Melt temperature, pressure, reaction time, and initial specific surface area of melt were considered as experimental variables. The evaporation rate of magnesium increased with the increase of melt temperature and initial specific surface area of melt, and with the decrease of the pressure. The activation energy of magnesium evaporation reaction calculated by an Arrhenius plot decreased with the decrease of the pressure and with the increase of the initial specific surface area of melt. An empirical equation was derived for the evaporation rate of magnesium from AM50 alloy melt.

Electrical Characteristics of Pressure Device with Graphene Oxide Composite Structure (산화 그래핀 복합소자의 압력에 따른 전기적 특성 변화 연구)

  • Kim, Yong Woo;Roh, Gi Yeon;Sung, Hyeong Seok;Choi, Woo jin;Ahn, Yong Jae;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.93-99
    • /
    • 2019
  • A pressure sensor is a device that converts an applied physical pressure into an electrical signal. Such sensors have a range of applications depending on the pressure level, from low to high pressure. Sensors that use physical pressure, when compared to those operating under air pressure, are not widely applied as they are inefficient. To solve this problem, graphene oxide, which exhibits good mechanical and electrical characteristics, was used to increase the efficiency of these pressure sensors. Graphene oxide has properties that control the movement of charges within the dielectric. Exploiting these properties, we evaluated the change in electrical characteristics when pressure was applied according to the ratio and thickness of the oxidation graph added to the pressure sensor.

Development of an Automated Design System of CNG Composite Vessel using Steel Liner Manufactured by D.D.I Process (D.D.I 공정으로 제조된 금속라이너를 이용한 CNG 복합재 압력용기의 설계 자동화 시스템 개발)

  • Kim, Eui-Soo;Kim, Ji-Hoon;Park, Yoon-So;Kim, Chul;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.205-213
    • /
    • 2003
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage preceding to the sudden bursting which is generated by the pressure leakage condition. Therefore, Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field such as defense industry, aerospace industry and rocket motor case where lightweight and the high pressure are demanded. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS, general commercial software, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

Ceramic magnetic core material for coupling unit under the condition of high voltage as a part of the PLC (전력선 통신(PLC)을 위한 HV 커플러용 자심재료)

  • 이해연;김현식;오영우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.365-368
    • /
    • 2000
  • We have studies on the Microstructures and densities as a function of forming pressures and the magnetic properties of the specimens with additive Bi$_2$O$_3$ that sintered at 95$0^{\circ}C$ for 4.5 hours for synthesizing optimal Ni-Cu-Zn ferrite. Green density rose generally as Forming pressure increased from 1.7 ton/cm$^2$to 2.5 ton/cm$^2$and Cold Isostatic Pressure(CIP) method was more effective than Die Pressure(DP) method to high green density. Forming pressure had no influence on apparent density but on the other hand Bi$_2$O$_3$contents were strongly dominant to appaernt density than forming pressure. Bi$_2$O$_3$liquid phases created during sintering process promoted sintering and grain growth so that apparent density, grain size and permeability increased compared to that of the specimens which were sintered with non-additive Bi$_2$O$_3$.

  • PDF

Study on Numerical-analysis Technique for Windpower System Structure under Environmental Loadings (환경하중하의 풍력발전 시스템 구조물의 수치 해석적 기법 연구)

  • Jung, Hae-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.69-75
    • /
    • 2011
  • The purpose of this study was to develop a buckling analysis technique for a windpower system structure under environmental loadings (hydrostatic pressure) using FEM. We analyzed an isotropic material and composite material and made a comparison using buckling pressure formulas. First, finite element analyses for an isotropic material (SC410) were performed to obtain the variation of buckling pressure for the number of elements and boundary conditions in a pressure-shell model, and the numerical results were compared with those of existing empirical formulas. Then, additional finite element analyses based on the results of the isotropic material (SC410) were performed to determine the optimum lamination angle and pattern for a composite material (URN300). The results of the FE analyses for the composite material were also compared with those of existing empirical formulas. The ply orientations (lamination angles) used in the FE analyses were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and. The lamination patterns in the FE analyses were and. The lamination pattern was assumed to be the equivalent model of. The results of the FE analyses for the isotropic material (SC410) indicated that the optimal values for the number of elements and the boundary conditions were 6000 and both simply supported, respectively. The results of the FE analyses for the composite material (URN300) showed that the optimal ply orientation was $60^{\circ}{\sim}75^{\circ}$.

Characteristics of Microstructure and Reheating of A356 Aluminum Alloy by Pressure Rotation Equipment (가압회전식 장비를 이용한 A356 합금의 미세조직과 재가열 특성)

  • Seo P. K.;Ko J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.227-230
    • /
    • 2005
  • Many rheocasting processes had been proposed because of the difficulty of recycling, the limit of material, and the high cost of raw material in thixocasting. But, these rheocasting processes also had disadvantages such as the high initial Investment cost and the lower mechanical properties than thixocasting. In this study, a continuous fabrication of rheological material with pressure rotation equipment was newly devised to overcome the disadvantages of rheocasting process. In order to investigate the thixoformability, reheating experiments were carried out with the material fabricated by the newly devised equipment. Morphological characteristics between mechanical stirring and reheating were compared.

  • PDF

Curing Behaviors of SEMI-IPN Structure UV-curable Pressure Sensitive Adhesive for Dicing Tape (Semi-IPN 구조를 갖는 다이싱 테이프용 자외선 경화형 점착제의 경화거동)

  • Do, Hyun-Sung;Kim, Hyun-Joong;Shim, Chang-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.127-128
    • /
    • 2005
  • UV-curable pressure sensitive adhesives were prepared by blending acrylic copolymer, copolymerized with butyl acrylate (BA), acrylic acid (AA) and vinyl acetate (VAc) by solution polymerization, triethyl amine (TEA) and trimethylolpropane triacrylate (TMPTA). The PSAs were evaluated by peel strength with varying contents of TMPTA and UV dose, and also glass transition temperature($T_g$) of PSAs were measured. When exposed on UV irradiation, the PSAs showed the decreased peel strength and increased $T_g$. And following UV irradiation, the PSAs did not leave any residue on wafer after peel off PSA.

  • PDF

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

Electrical applications of braided composite materials (브레이드 섬유강화 복합재료의 전기적 특성)

  • 한동희;조한구;한세원;박기호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.882-885
    • /
    • 2001
  • This paper aims to investigate the characteristics of braided thermoplastic composite and pressure relief for polymer arrester. In general, braided composite has potential for improved impact and delamination resistance. Manufacturing processes of the braided composite could also be automated and could potentially lead to lower costs. Therefore, in consideration of characteristics of pressure relief for polymer arrester, the fabric pattern of braided composite was decided. And polymer arrester module was manufactured with braid.

  • PDF

The Effect of Chamber Pressure and Nitrogen Flow Rate on Deposition Characteristics of $(Ni_{0.8}Fe_{0.2})_{20}Ag_{80}$ Thin Films

  • Oh, T.S.;Choo, W.K.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.275-280
    • /
    • 1997
  • We have investigated the deposition characteristics of (Ni0.8Fe0.2)20Ag80 thin films as a function of chamber pressure and nitrogen flow rate with scanning electron microscopy(SEM), atomic force microscopy(AFM), XRD and $\alpha$-step. The deposition rate of these film is decreased with increasing the chamber pressure and the nitrogen flow rate. With raising the chamber pressure, the growth mode of thin film is changed from island growth to columnar one, which is probably due to energy of atom. Contrary, the nitrogen flow rate is raised, growth mode is changed from columnar to island one. According to the XRD patterns, the preferred orientation is inhibited as the nitrogen flow rate is kept above 10 sccm, but that is nearly independent on the chamber pressure. When the chamber pressure decrease or the nitrogen flow rate increase, phase separation into permoally and silver is occured.

  • PDF