• Title/Summary/Keyword: Pressure gauge

Search Result 299, Processing Time 0.024 seconds

An Experimental Study on Shallow Water Effect in Slamming (천수에서의 슬래밍 현상에 대한 실험적 연구)

  • Kang, Hyo-Dong;Oh, Seung-Hoon;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • This study presents an experimental investigation of the shallow water impact of a box type structure. The analysis was done based on the video images captured by a high speed camera, the flow field obtained by PIV (Particle Image Velocimetry), and pressure measurements in the divided region. The video images showed quite good agreement with the description given by Korobkin. The PIV measurements of the velocity field provided a clear view of the flow pattern for all three stages. The pressure was measured at the bottom of the tank with strain gauge type pressure gauges. The pressure measurements showed the characteristics of divided regions.

Earth Pressure Distribution on Retention Walls in the Excavation of Multi -Layered Ground (다층지반 굴착시 토류벽에 작용하는 토압분포)

  • 이종규;전성곤
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1993
  • In deep excavations for creation of underground spaces, it would be difficult to predict earth pressure, especially multilayered ground including rock strata. The earth pressures and displacements on the retention walls are measured by load cell, strain gauge and inclinometer which were installed at struts or anchors at 4 deep excavation sites in Seoul area. In this paper, the measured earth pressure from the struts or anchors are compared with Peck's empirical values, and the coefficient of the earth pressures for each strata and horizontal wall displacement are investigated. The coefficient of earth pressure distribution, a(0.65zka), in the flexible and the rigid walls was about 74% and 88% of Peck's value respecitively. The measured earth pressure distributions for the 4 sites showed about 70%∼80% of Peck's empirical values and the average earth pressure coefficients based on the measured data were 0.3 for the felted layer, 0.23 for the weathered rock and 0.19 for the weak rock. The maximum w리1 displacements were found to be less 0.2% of excavation depth.

  • PDF

Feasibility Study of Embedded FBG Sensors for the Smart Monitoring of High Pressure Composite Vessel (복합재 고압용기의 스마트 모니터링을 위한 FBG 센서의 삽입 적용성에 관한 연구)

  • Park, Sang-Wuk;Park, Sang-Oh;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.33-36
    • /
    • 2005
  • In this research, for the smart health monitoring of the hydrogen storage high pressure composite vessel, the feasibility study of an embedded fiber Bragg grating(FBG) sensor is carried out. To verify strain measurement in various temperature environment which is needed for the hydrogen pressure vessel, tensile test of a composite specimen with both an embedded FBG sensor and a strain gauge is made in low temperature. Before we try a real-size hydrogen storage pressure vessel, a small & cheap composite pressure vessel having the same structure is fabricated with embedded FBG sensors and tested. In the case of an aluminum liner inside the vessel, survivability of FBG sensors at the interface is lower than the other areas.

  • PDF

Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE (ICP-RIE를 이용한 저압용 실리콘 압력센서 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.

Study on the Measurement of Safety of a High Pressure Vessel (고압용기(高壓容器)의 안전도(安全度) 측정(測定)에 관(關)한 연구(硏究))

  • Yim, Tong-Kyu;Choi, Man-Yong;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 1983
  • There are two weak points in a high pressure vessel, one is a corner, the other is a crack on the base. In order to evaluate safety of a department of a corner and a crack like a starfish on the base in a high pressure vessel (working pressure: $130kg/cm^{2}$), which was made by Marison's Process, we analyzed stress by strain gauge, measured thickness and hardness by ultrasonic testing, and were able to test pressure by water pressure from nondestructive testing. Also destructive testings were applied to measure thickness and to observe microstructure and chemical composition of a corner on the base. From the results of the experiment, values of experiment were satisfied with a condition of application. But, it is considered that a crack on the base is to be investigated with more by Fracture Mechanics.

  • PDF

Design and Performance Test of Plate Type ER-Valve (평판형 ER-Valve의 제작 및 성능실험)

  • 장성철;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2003
  • In this research 4 plate type ER-Valves which have same surface but different width and length are designed and an experimental apparatus is constructed. With this experimental apparatus, flow rate and pressure drop of ER fluid flowing in ER-valves are measured with varying electric field strength of ER-valve, and relation between valve types and pressure drop is also experimented. ER fluid is made silicon oil mixed with 40wt% starch having hydrous particles. If we allow the same electric field in the ER-Valve, we came to how that the pressure drop is effected by the electrode length and electrode width. When the strength of the electric field increased, the pressure drop happened big and the flow rate decreased.

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Ill-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik;Kim, Yeong-Sin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Il-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

Characteristics of chromium oxide thin-films for high temperature piezoresistive sensors (고온용 압저항센서용 크롬산화박막의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Lee, Eung-Ahn;Chung, Gwiy-Sang;Kim, Kwang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • This paper present characteristics of chromium oxide thin-film as piezoresistive sensors, which were deposited on Si substrates by DC reactive magnetron sputtering in an argon-Oxide atmosphere for high temperature applications. The chemical composition, physical and electrical properties and thermal stability ranges of the $CrO_{x}$ sensing elements have studied. $CrO_{x}$ thin films with a linear gauge factor(GF${\fallingdotseq}$15), high electrical resistivity (${\rho}$ = $340{\mu}{\Omega}cm$) and TCR<-55 ppm/$^{\circ}C$ have been obtained. These $CrO_{x}$ thin films may allow high temperature pressure sensor miniaturization to be achieved.