• Title/Summary/Keyword: Pressure force

Search Result 2,844, Processing Time 0.036 seconds

Reinforcement Effect of Stabilizing Piles in Large-scale Cut Slops (대절토사면에 보강된 억지말뚝의 활동억지효과에 관한 연구)

  • 홍원표;한중근;송영석;신도순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.65-81
    • /
    • 2003
  • During the last few decades in Korea, the development of hillside or mountain areas has rapidly increased for infrastructure construction such as railroads, highways and housing. Many landslides have occurred during these constructions. Also, the amount and scale of damage caused by landslides have increased every year. In the case of Far East Asia including Korea, the damage of landslides is consequently reported during the wet season. In this paper, the effect of stabilizing piles on slope stability is checked and the behavior of slope soil and piles are observed throughout the year by field measurements in the large-scale cut slopes. In particular a large-scale cut slope situated on the construction site for the express highway in Donghae, Korea. First of all, The behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil gradually increased and rapidly decreased at depth of sliding surface indicating that the depth of sliding surface below the ground surface can be predicted. On the basis of being able to predict the depth of the sliding surface, stabilizing piles were designed and constructed in this slope. To ensure the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. The maximum deflection of piles is measured at the pile head and it is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

  • PDF

Local Variation of Magnetic Parameters of the Free Layer in TMR Junctions

  • Kim, Cheol-Gi;Shoyama, Toshihiro;Tsunoda, Masakiyo;Takahashil, Migaku;Lee, Tae-Hyo;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.72-79
    • /
    • 2002
  • Local M-H loops have been measured on the free layer of a tunneling magnetoresistance (TMR) junction using the magneto-optical Kerr effect (MOKE) system, with an optical beam size of about 2 $\mu$m diameter. Tunnel junctions were deposited using the DC magnetron sputtering method in a chamber with a base pressure of 3$\times$10$^{-9}$ Torr. The relatively irregular variations of coercive force H$_c$(∼17.5 Oe) and unidirectional anisotropy field H$_{ua}$(∼7.5 Oe) in the as-deposited sample are revealed. After $200{^{\circ}C}$ annealing, He decreases to 15 Oe but H$_{ua}$ increases to 20 Oe with smooth local variations. Two-dimensional plots of H$_c$ and H$_{ua}$ show the symmetric saddle shapes with their axes aligned with the pinned layer, irrespective of the annealing field angle. This is thought to be caused by geometric effects during deposition, together with a minor annealing effect. In addition, the variation of root mean square (RMS) surface roughness reveals it to be symmetric with respect to the center of the pinned-layer axis, with the roughness of 2.5 $\AA$ near the edge and 5.8 $\AA$ at the junction center. Comparison of surface roughness with the variation of H$_{ua}$ suggests that the H$_{ua}$ variation of the free layer is well described by dipole interactions related to surface roughness. As a whole, the reversal magnetization is not uniform over the entire junction area and the macroscopic properties are governed by the average sum of local distributions.

Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method (Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구)

  • Choi, Jong-Ho;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • The present paper describes a mathematical modeling and simulation of the separation of a solid rocket booster from an air breathing engine vehicle. The vehicle and booster are considered as a multi-connected body and the booster is assumed to move only along the axial direction of the vehicle. The dynamic motion of the vehicle and the booster were modeled by using Kane's method. The aerodynamic forces on the whole system along various positions of booster were calculated by using DATCOM software and the internal pressure force acting on the effective surface during separation was simply calculated with gas dynamics and Taylor MacColl equation. Numerical simulation was done by using Mathworks-Matlab. From the result, the variation of Mach number and angle of attack are not large during the separation, so the variation of pitch angle and the characteristics of inlet flow for varying the Mach number and angle of attack during the separation test can be identified as neglectable values.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

P-y Curves from Large Displacement Borehole Testmeter for Railway Bridge Foundation (장변위공내재하시험기를 이용한 철도교 기초의 P-y곡선에 관한 연구)

  • Ryu, Chang-Youl;Lee, Seul;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.836-842
    • /
    • 2011
  • The lateral stability of bridge foundations against train moving load, emergency stopping load, earthquakes, and so on is very important for a railway bridge foundation. A borehole test is much more accurate than laboratory tests since it is possible to minimize the disturbance of ground conditions on the test site. The representative borehole test methods are Dilatometer, Pressuremeter and Lateral Load Tester, which usually provide force-resistance characteristics in elastic range. In order to estimate P-y curves using those methods, the non-linear characteristics of soil which is one of the most important characteristics of the soil cannot be obtained. Therefore, P-y curves are estimated usually using elastic modulus ($E_O$, $E_R$) of lateral pressure-deformation ratio obtained within the range of elastic behavior. Even though the pile foundation is designed using borehole tests in field to increase design accuracy, it is necessary to use a higher safety factor to improve the reliability of the design. A Large Displacement Borehole Testmeter(LDBT) is developed to measure nonlinear characteristics of the soil in this study. P-y curves can be directly achieved from the developed equipment. Comparisons between measured P-y curves the LDBT developed equipment, theoretical methods based on geotechnical investigations, and back-calculated P-y curves from field tests are shown in this paper. The research result shows that the measured P-y curves using LDBT can be properly matched with back-calculated P-y curves from filed tests by applying scale effects for sand and clay, respectively.

  • PDF

Study on Friction Energy of Rubber Block Under Vertical Load and Horizontal Velocity (고무블록의 수직 하중 및 수평 속도에 따른 마찰에너지 연구)

  • Kim, Jin Kyu;Yoo, Sai Rom;Lee, Il Yong;Kim, Doo Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Rubber is one of the most commonly used materials in various fields because of its unique viscoelastic properties. Friction occurs when a tire constantly makes contact with the ground. As a result, friction causes wear. The frictional energy caused by friction is a primary factor in the wear mechanism. The frictional energy is affected by various conditions (temperature, roughness of ground, shape of rubber, load, and materials). In this study, the analysis was preceded by considering the vertical load and the horizontal velocity to the rubber using ABAQUS/explicit. The contact pressure, and friction energy are derived using the shear force and slip distance. The actual behavior of the rubber test data were compared with the analysis results.

Preparation of Langmuir-Blodgett Film of Silica Coated Gold Nanoparticles (실리카 코팅 AuNPs의 Langmuir-Blodgett 박막 제조)

  • Park, Minsung;Choi, Jaeyoo;Jung, Jaeyeon;Cheng, Jie;Hyun, Jinho
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.144-148
    • /
    • 2010
  • It reports the surface modification of gold nanoparticles (AuNPs) by the synthesis of thin silica layer and the fabrication of AuNPs monolayer on the glass surface. AuNPs of 10 nm in diameter were prepared in aqueous solution. A silica layer was synthesized at the different concentration of tetraethlyorthosilicate for the control of silica layer thickness. Langmuir-Blodgett (LB) film was fabricated by dispersing AuNPs on the aqueous solution and raising a surface pressure up to a solid phase. The change of AuNPs' size was observed by the change of UV/Visible spectra. Atomic force microscopic images confirmed the reliable fabrication of AuNPs LB films.

Pharmacological Action of Adenosine on the Cardiovascular System (Adenosine의 심장 및 혈관에 대한 약리작용)

  • Ann, Hyung-Soo;Lee, Young-Me
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • Bolus intravenous injection of adenosine resulted the temporal decrease of systemic blood pressure and heart rate in the anesthetized rats. Adenosine also resulted the persistent decrease of contractility and heart rate in the isolated spontaneously beating rat right atria. Both of the above inhibition effets of adenosine were increased by the pretreatment of NBI (nitrobenzylthioinosine), whitch is an adenosine transport inhibitor, but decreased by the pretreatment of 8- phenyltheophy1line, which is an adenosine antagonist. In isolated thoracic aorta ring segment of normotensive rats, intact rings were relaxed by adenosine ($42.3{\pm}8.7%$) and ATP ($85.9{\pm}15.8%$) in the concentration of $10^{-4}M$, but rubbed rings were relaxed by adenosine ($35.2{\pm}1.9%$) and ATP ($11.3{\pm}9.0%$) in $10^{-4}M$. After pretreatment of L-NAME (N-Nitro-Larginine methyl ester), which is an NO inhibitor, adenosine-induced relaxation was not affected, but ATP-induced relax ation was significantly inhibited (P<0.01). Meanwhile, adenosine resulted almost same as vasorelaxation in isolated thoracic aorta of SHR comparing to those of normotensive rats. But, vasodilation responses of ATP in intact rings of SHR are significantly inhibited comparing to those of normotensive rats. Adenosine-induced relaxation is attenuated after 8-phenyltheophylline pretreatment, but increased after NBI pretreatment. However, ATP-induced relaxations are not affected by 8-phenyltheophylline or NBI pretreatment. These results suggested that the hypotensive effects of adenosine was due to the decrease of contractile force and heart rate through the A1 receptor and vasodilation are mediated by A2 receptor of the vascular smooth muscle. And, the heart protective and vasodilation effects of adenosine might suggest that it would be useful in the acute treatment of coronary artery disease.

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF