• Title/Summary/Keyword: Pressure estimation

Search Result 993, Processing Time 0.03 seconds

Measurement of RBC (red blood cell) deformability using 3D Printed Chip combined with Smartphone (스마트 폰 기반 3D 프린팅 칩을 이용한 적혈구 변형성 측정)

  • Lee, Suhwan;Hong, Hyeonji;Yeom, Eunseop;Song, Jae Min
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2020
  • RBC (red blood cell) deformability is one of factors inducing blood shear thinning effect. Reduction of RBC deformability increases blood viscosity in high shear region. In this study, 3D printed chip with proper distribution of wall shear rate (WSR) was proposed to measure RBC deformability of blood samples. To fabricate 3D printed chip, the design of 3D printed chip determined through numerical simulation was modified based on the resolution of the 3D printer. For the estimation of pressure drop in the 3D printed chip, two bypass outlets with low and high WSR are exposed to atmospheric pressure through the needles. By positioning the outlet of needles in the gravity direction, the formation of droplets at bypass outlets can be captured by smartphone. Through image processing and fast Fourier transform (FFT) analysis, the frequency of droplet formation was analyzed. Since the frequency of droplet formation is related with the pressure at bypass, high pressure drop caused by reduction of RBC deformability can be estimated by monitoring the formation of blood droplets using the smartphone.

Stability Analysis Using the Amplitude Envelope of Dynamic Pressure in the Rocket Combustor (로켓 연소기의 동압 진폭엔벨롭을 이용한 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2021
  • As a measure of susceptibility on the combustion instability, thermo-acoustic instabilities in rocket combustion system was considered for the estimation of the operational stability margin. Growth rate, which governs the asymptotic stability behavior of the system, was determined from the dynamic data measured during combustion tests in order to understand the dynamic characteristics of combustor system. Frequency transform technique was first applied to determine the system parameters such as growth rate and/or damping coefficient for an interested mode from the time series pressure data, and the PDFs of pressure amplitude were extracted from the amplitude envelope of pressure oscillation for the stochastic analysis.

Artificial Intelligence-based Leak Prediction using Pipeline Data (관망자료를 이용한 인공지능 기반의 누수 예측)

  • Lee, Hohyun;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.963-971
    • /
    • 2022
  • Water pipeline network in local and metropolitan area is buried underground, by which it is hard to know the degree of pipe aging and leakage. In this study, assuming various sensor combinations installed in the water pipeline network, the optimal algorithm was derived by predicting the water flow rate and pressure through artificial intelligence algorithms such as linear regression and neuro fuzzy analysis to examine the possibility of detecting pipe leakage according to the data combination. In the case of leakage detection through water supply pressure prediction, Neuro fuzzy algorithm was superior to linear regression analysis. In case of leakage detection through water supply flow prediction, flow rate prediction using neuro fuzzy algorithm should be considered first. If flow meter for prediction don't exists, linear regression algorithm should be considered instead for pressure estimation.

Computer-Aided Optimal Design of Heat Exchangers (컴퓨터에 의한 열교환기 최적설계)

  • Song Tae Ho;Oh Jin Kook;Yoon Chang Hyun;Huh Gyoung Jae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.4
    • /
    • pp.297-303
    • /
    • 1981
  • Optimal design of shell and tube heat exchanger system with the working fluids which may condense outside the tubes has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel series, tube diameter, distribution pitch, tube side pressure loss, baffle cut and shell side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial series and number of baffles were all characterized according to the standard. Exhaustive search method was used to construct a computer program together with the calculation of heat transfer rate by LMTD method. stress analysis of maj or parts was made to examine their dimensions satisfying heat transfer and pressure loss requirements. Cost estimation based on the installation, operation and maintenance was also made, A few representative variables, heat transfer area, shell diameter and pressure loss, were used to express cost function, finally giving the optimal selection of all tentative solutions.

  • PDF

Effect of soil condition on the coefficient of lateral earth pressure inside an open-ended pipe pile

  • Ko, Junyoung;Jeong, Sangseom;Seo, Hoyoung
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.209-222
    • /
    • 2022
  • Finite element analyses using coupled Eulerian-Lagrangian technique are performed to investigate the effect of soil conditions on plugging of open-ended piles in sands. Results from numerical simulations are compared against the data from field load tests on three open-ended piles and show very good agreement. A parametric study focusing on determination of the coefficient of lateral earth pressure (K) in soil plug after pile driving are then performed for various soil densities, end-bearing conditions, and layering conditions. Results from the parametric study suggest that the K value in the soil plug - and hence the degree of soil plugging - increases with increasing soil densities. The analysis results further show that the K value within the soil plug can reach about 63 to 71% of the coefficient of passive earth pressure after pile driving. For layered soil profiles, the greater K values are achieved after pile driving when the denser soil layer is present near the pile base regardless of number of soil layers. This study provides comprehensive numerical and experimental data that can be used to develop advanced theory for analysis and design of open-ended pipe piles, especially for estimation of inner shaft resistance after pile driving.

Analysis of Oscillometric Model based on Shape of Arterial Pressure (동맥압 형태를 고려한 오실로메트릭 모델분석)

  • 임성수;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 2000
  • This paper describes the analysis of the oscillometric method based on the shape of arterial pressure and proposal of a new algorithm for estimating the blood pressure by computer simulation. In the first step, the arterial pressure model which is able to control the shape of arterial pressure was designed and then we simulated the oscillometric model using both the existing exponential model showing the static arterial pressure-volume relation and the designed arterial pressure model. By analyzing the correlation of characteristic ratio based on the shape of arterial pressure, we could find that the characteristic ratio was not the only standard parameter for estimating systolic and diastolic pressure. We were able to estimate the shape of arterial pressure by computing the correlation of arterial pressure shape with oscillation shape. Finally, we proposed an algorithm which is able to estimate systolic and diastolic pressure according to pressure(Pp) table constructed from the relation of maximum amplitude of oscillation and arterial pressure shape. We tested 60 arterial pressure waveforms having various arterial pressure shape and pulse. As a results, the absolute deviation average values of the estimation of systolic, diastolic and mean pressure were 1.62%, 2.40% and 2.20%, respectively. In conclusions, the proposed algorithm showed the possibility of usefullness in estimating the blood pressure.

  • PDF

Gastrointestinal Tissue Blood Volume Affected by Venous Pressure Change (실혈 후 및 혈압상승 후의 소화기 조직 혈액량 및 산소 섭취량 -제 1 편 정맥혈압과 소화기 조직 혈액량-)

  • Yoon, Byong-Hak;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 1968
  • Changes in gastrointestinal tissue blood volume induced by variations of venous pressure between 6 and 40 mmHg were studied in 32 rabbits. Venous pressure lowering was produced by withdrawal of appropriate volume of blood and venous pressure elevation was obtained by partial occlusion of intra-thoracic vena cava inferior. Estimation of regional tissue blood volume was performed by means of regional distribution of injected $Cr^{51}-labeled$ red blood cells. The following results were obtained. 1. At the normal control venous pressure value of 18 mmHg, spleen showed the highest value of tissue blood volume expressed on weight basis, namely, $111{\mu}l/gm$, Liver tissue blood volume was $95\;{\mu}l/gm$, small intestine 24 and stomach $21\;{\mu}l/gm$, respectively. 2. Linear relationships were observed between venous pressure change and gastrointestinal tissue blood volume. The coefficients of correlation were: in spleen r=0.723; in liver r=0.791; in stomach r=0.704, respectively. In small intestine the relationship was less clear and r=0.358. Tissue blood volume of extrabdominal tissue, such as M. gastrocnemius was not influenced by venous pressure change. 3. The highest change in tissue blood volume expressed on weight basis was observed in spleen. The liver tissue showed the next highest change. Change in total tissue blood volume, however, was greatest in liver and next greatest in small intestine. This was interpreted by the fact that total weight of these two organs was much greater than that of spleen. 4. The mechanism that the change in tissue blood volume lies in the venous system which has a great compliance was discussed.

  • PDF

Earth Pressure on the Cylindrical Wall in Cohesionless Soils (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압)

  • 천병식;신영완
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.175-187
    • /
    • 2003
  • The earth pressure acting on the cylindrical retaining wall in cohesionless soils is different from that on the retaining wall in plane strain condition due to three dimensional arching effect. Accurate estimation of earth pressure is required for the design of vertical cylindrical retaining wall. Failure modes of the ground behind vertical shaft are dependent on ground in-situ stress conditions. Failure modes are actually divided into two modes of cylindrical failure mode and funnel-shaped mode with truncated cone surface. Several researchers have attempted to estimate the earth pressure on cylindrical wall for each failure mode, but they have some limitations. In this paper, several equations for estimating the earth pressure on cylindrical wall in cohesionless soils are investigated and new formulations for two failure modes are suggested. It rationally takes into account the overburden pressure, wall friction, and force equilibriums on sliding surface.

Accuracy Validation of Urinary Flowmetry Technique Based on Pressure Measurement (수압 측정에 기반하는 요류검사의 정확도 검증)

  • Choi, Sung-Soo;Lee, In-Kwang;Kim, Kun-Jin;Kang, Seung-Bum;Park, Kyung-Soon;Lee, Tae-Soo;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.198-204
    • /
    • 2008
  • Uroflowmetry is a non-invasive clinical test useful for screening benign prostatic hyperplasia(BPH) common in the aged men. The current standard way to obtain the urinary flow rate is to continuously acquire the urine weight signal proportional to volume over time. The present study proposed an alternative technique measuring pressure to overcome noise problems present in the standard weight measuring technique. Experiments were performed to simultaneously acquire both weight and pressure changes during urination of 9 normal men. Noise components were separated from volume signals converted from both weight and pressure signals based on the polynomial signal model. Signal-to-noise ratio was defined as the ratio of the energies between signal and noise components of the measured volume changes, which was 8.5 times larger in the pressure measuring technique, implying that cleaner signal could be obtained, more immune to noisy environments. When four important diagnostic parameters were estimated, excellent correlation coefficients higher than 0.99 were resulted with mean relative errors less than 5%. Therefore, the present pressure measurement seemed valid as an alternative technique for uroflowmetry.

Pressure-load Calibration of Multi-anvil Press at Ambient Temperature through Structural Change in Cold Compressed Amorphous Pyrope (비정질 파이로프의 저온 압축에 따른 구조 변화를 이용한 멀티 앤빌 프레스의 상온 압력-부하 보정)

  • Lhee, Juho;Kim, Yong-Hyun;Lee, A Chim;Kim, Eun Jeong;Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.65-73
    • /
    • 2022
  • The proper estimation of physical and chemical properties of Earth materials and their structures at high pressure and high temperature conditions is key to the full understanding of diverse geological processes in Earth and planetary interiors. Multi-anvil press - high-pressure generating device - provides unique information of Earth materials under compression, mainly relevant to Earth's upper mantle. The quantitative estimation of the relationship between the oil load within press and the actual pressure conditions within the sample needs to be established to infer the planetary processes. Such pressure-load calibration has often been based on the phase transitions of crystalline earth materials with known pressure conditions; however, unlike at high temperature conditions, phase transitions at low (or room) temperatures can be sluggish, making the calibration at such conditions challenging. In this study, we explored the changes in Al coordination environments of permanently densified pyrope glasses upon the cold compression using the high-resolution 27Al MAS and 3QMAS NMR. The fractions of highly coordinated Al in the cold compressed pyrope glasses increase with increasing oil load and thus, the peak pressure condition. Based on known relationship between the peak pressure and the Al coordination environment in the compressed pyrope glasses at room temperature, we established a room temperature pressure-load calibration of the 14/8 HT assembly in 1,100-ton multi-anvil press. The current results highlight the first pressure-load calibration of any high pressure device using high-resolution NMR. Irreversible structural densification upon cold compression observed for the pyrope glasses provides insights into the deformation and densification mechanisms of amorphous earth materials at low temperature and high pressure conditions within the subducting slabs.