• Title/Summary/Keyword: Pressure drop rate

Search Result 653, Processing Time 0.024 seconds

Effects of Spray Characteristics of Water Mist on The Extinction of a Liquid Pool Fire (분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Kim, Ho-Young;Oh, Sang-Youp;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1591-1599
    • /
    • 2004
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is a small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is l15∼180${\mu}{\textrm}{m}$ with nozzle A and 130∼190${\mu}{\textrm}{m}$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of $O_2$ concentration.

Effects of Bleed Hole on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs (90도 요철이 설치된 회전덕트에서 유출홀이 열/물질전달에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.178-184
    • /
    • 2005
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter ($D_h$) of the square channel is 40.0 mm. The bleed holes are located between the rib turburators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height (e) and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow were fixed at 10,000 and 10%, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Cariolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

  • PDF

The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire (미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Oh, Sang-Youp;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

Studies on the Performance Evaluation of Downsized High-efficiency Cooling Module (높이 축소형 고효율 냉각모듈의 성능 평가에 관한 연구)

  • Jung, Jung-Hun;Shin, Yoon-Hyuk;Park, Sung-Wook;Jeong, Sun-An;Kim, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The cooling module needs enough space (or distance) from hood to absorb the energy from any pedestrian collision. Downsized cooling module for pedestrian protection is important to reduce the severity of pedestrian injury. When a vehicle collision happens, the downsized cooling module is required to reduce the risk of injury to the upper legs of adults and the heads of children. In this study, the performance of cooling module to cool the engine was investigated under 25% height reduction. The heat dissipation and pressure drop characteristics have been experimentally studied with the variation of coolant flow rate, air inlet velocity and A/C operation ON/OFF for the downsized cooling module. The results indicated that the cooling performance was about 94% level compared to that of the conventional cooling module. Therefore, we checked that the cooling module had good performance, and expected that the cooling module could meet the same cooling performance as conventional cooling module through optimization of components efficiency.

Evaluation of Catalyst Assisted EGR Cooler System for EGR Cooler Fouling Reduction (EGR Cooler Fouling 저감을 위한 촉매 장착 EGR Cooler System 평가)

  • Hong, Kwang-Seok;Park, Jung-Soo;Lee, Kyo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • Exhaust gas recirculation is the well-known and widely used NOx reduction technology for diesel engines. More effective EGR cooler has been developed and applied to diesel engines to meet the reinforced emission regulation. However, the contaminated EGR cooler by diesel exhaust gas reduces the performance of the engine and NOx reduction rate. The buildup of deposits in EGR coolers cause significant degradation in heat transfer performance, often on the order of 20~30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operation conditions. In this study, as a solution for this problem, DOC assisted EGR cooler is designed and then investigated to reduce fouling and its impact on cooler performance. A single channel EGR cooler fouling test apparatus and soot particle generator were developed to represent the real EGR cooler and exhaust gas of diesel engine. EGR cooler effectiveness of the case with catalyst of pt 30g/ft3 decreased just up to 5%. This value was 45% less compared to the case without catalyst which decreased up to 9% after 10hours experiments.

Study on self-pulsation characteristics of gas centered shear coaxial injector for supercavitating underwater propulsion system

  • Yoon, Jung-Soo;Chung, Jae-Mook;Yoon, Young-Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-292
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles for underwater propulsion system, basic experiments on gas-liquid shear coaxial injector are necessary. In the gas-liquid coaxial injector self-pulsation usually occurs with an intense scream. When self-pulsation occurs, mass flow rate oscillation and intense scream are detected by the interactions between the liquid and gas phase. Self-pulsation must be suppressed since this oscillation may cause combustion instabilities. Considerable research has been conducted on self-pulsation characteristics, but these researches are conducted in swirl coaxial injector. The main objective of this research is to understand the characteristics of self-pulsation in shear coaxial injector and reveal the mechanism of the phenomenon. Toward this object, self-pulsation frequency and spray patterns are measured by laser diagnostics and indirect photography. The self-pulsation characteristics of shear coaxial injector are studied with various injection conditions, such as the pressure drop of liquid and gas phase, and recess ratio. It was found that the frequency of the self-pulsation is proportional to the liquid and gas Reynolds number, and proportional to the L/d.

Effects of Fin Conduction and Superheat Unbalance on the Performance of an Evaporator (핀의 전도 열전달 및 과열도 변화에 따른 증발기 성능 특성에 관한 연구)

  • Choi Jong Min;Kim Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2005
  • An experimental investigation was executed to determine the capacity degradation due to fin conduction and non-uniform refrigerant distribution in a multi-path evaporator with cross-counter flow. The finned-tube evaporator, which had a three-path and three-depth-row, was tested by controlling inlet quality, exit pressure, and exit superheat for each refrigerant path. The capacity reduction due to superheat unbalance between each path was as much as $25\%$ for non-cutting evaporator, even when the overall evaporator superheat was kept at a target value of $5.6^{\circ}C$. It indicates that the internal heat transfer within the evaporator assembly causes the partial capacity drop. The capacity of cutting-evaporator with respect to non-cutting evaporator was enhanced according to the increment of air flow rate when superheat or superheat unbalance increased.

NOx Emission Characteristic according to Aging of EGR Cooler in Non-Road Diesel Engine (EGR 적용 비도로 엔진의 쿨러 열화에 따른 질소산화물 배출특성)

  • Lee, Kyoung-Bok;Oh, Kwang-Chul
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.37-45
    • /
    • 2016
  • Exhaust gas recirculation has the advantage of being low-cost and easy to control of NOx emission. Therefore, it is most generally used to reduce NOx emission according to strengthen regulation. In the case of a non-road engine, such as the agricultural engine, since it mainly operate a middle or high-load state, NOx emission is decreased in accordance with the mapping range of the EGR rate, but results in an increase in the particulate matter which is caused to deposit and fouling problem of the EGR system. This problem has become an important issue for maintaining the performance of the engine, as well as emission performance. This study had examined the effects of cooler aging on the performance of heat transfer efficiency and NOx emission in non-road diesel engine. As a result of the EGR cooler aging during 200 hours engine operation, the cooling performance decreased about 25% compared with that of fresh cooler and the NOx emission increased about 14.6% on NRSC(non-road steady cycle) and 20% on NRTC(non-road transient cycle) compared with that of fresh cooler respectively.

Study on the Structure Optimization and the Operation Scheme Design of a Double-Tube Once-Through Steam Generator

  • Wei, Xinyu;Wu, Shifa;Wang, Pengfei;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1022-1035
    • /
    • 2016
  • A double-tube once-through steam generator (DOTSG) consisting of an outer straight tube and an inner helical tube is studied in this work. First, the structure of the DOTSG is optimized by considering two different objective functions. The tube length and the total pressure drop are considered as the first and second objective functions, respectively. Because the DOTSG is divided into the subcooled, boiling, and superheated sections according to the different secondary fluid states, the pitches in the three sections are defined as the optimization variables. A multi-objective optimization model is established and solved by particle swarm optimization. The optimization pitch is small in the subcooled region and superheated region, and large in the boiling region. Considering the availability of the optimum structure at power levels below 100% full power, we propose a new operating scheme that can fix the boundaries between the three heat-transfer sections. The operation scheme is proposed on the basis of data for full power, and the operation parameters are calculated at low power level. The primary inlet and outlet temperatures, as well as flow rate and secondary outlet temperature are changed according to the operation procedure.

Effect of Dry Ice Expanded Tobacco Blending Ratio on the Physical Properties of Cigarettes ($CO_2$를 이용하여 팽화된 각초배합율이 제조담배 물성에 미치는 영향)

  • Lee, Young-Tack;Jo, Si-Hyung;Kim, Sung-Han;Baek, Shin;Rhim, Kwang-Soo;Kim, Young-Ho;Shin, Chang-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.145-149
    • /
    • 1996
  • The experiment was carried out to study the effect of dry ice expanded tobacco (DIET) blending ratio on the physical properties of cigarettes. Vnencapsulated pressure drop (UPD) of the cigarette decreased from 85 mmWG to 78 mWG when the DIET blending ratio increased from 0% to 60%, but it increased in the range of over 60% blending ratio. But the overall UPD/EPD ratio of these cigarettes showed a decreasing tendency. Cigarette ventilation rate increased from 55% to 66% with the increased blending ratio of expanded tobacco and loose ends also showed the same tendency. The higher the blending ratio of expanded tobacco, the faster became the static burning time from 7' 34" to 5' 02". However, the cigarette hardness was almost not affected by the blending ratio.ing ratio.

  • PDF