• 제목/요약/키워드: Pressure drop curve

검색결과 40건 처리시간 0.025초

Choked Surge in a Cavitating Turbopump Inducer

  • Watanabe, Toshifumi;Kang, Dong-Hyuk;Cervone, Angelo;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.64-75
    • /
    • 2008
  • During an experimental investigation on a 3-bladed and a 4-bladed axial inducer, a severe surge instability was observed in a range of cavitation number where the blade passage is choked and the inducer head is decreased from noncavitating value. The surge was stronger for the 4-bladed inducer as compared with a 3-bladed inducer with the same inlet and outlet blade angles. For the 4-bladed inducer, the head decreases suddenly as the cavitation number is decreased. The surge was observed after the sudden drop of head. This head drop was found to be associated with a rapid extension of tip cavity into the blade passage. The cause of surge is attributed to the decrease of the negative slope of the head-flow rate performance curve due to choke. Assuming that the difference between the 3 and 4-bladed inducers is caused by the difference of the blockage effects of the blade, a test was carried out by thickening the blades of the 3-bladed inducer. However, opposite to the expectations, the head drop became smoother and the instability disappeared on the thickened blade inducer. Examination of the pressure distribution on both inducers could not explain the difference. It was pointed out that two-dimensional cavitating flow analyses predict smaller breakdown cavitation number at higher flow rates, if the incidence angle is smaller than half of the blade angle. This causes the positive slope of the performance curve and suggests that the choked surge as observed in the present study might occur in more general cases.

후분사를 적용한 대형디젤엔진의 연소 및 배기 특성에 관한 수치해석적 연구 (A Numerical Study on Combustion and Emission Characteristics in Heavy Duty Diesel Engine with Post Injection)

  • 최민수;배재옥;서현욱;이병화;전충환
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.193-201
    • /
    • 2014
  • A numerical study has been carried out to analyze the combustion characteristics in heavy duty diesel engine with post injection for reducing NO emission. For verification of numerical study results, calculated cylinder pressure was matched to experimental data. In this study, post injection timing and amount of post injection were modified as parameters, but the total amount of injection fuel was maintained. As the results, maximum cylinder pressure increases above minimum 2% by post injection and end of pressure curve is decreased rapidly. The more dwell time and amount of post injection fuel are, the more pressure drop occurs. And trade-off relation of NO and soot are appeared. In the results, NO was reduced without deterioration of cylinder pressure under condition of $10^{\circ}$ CA dwell time and main 60%, post 40% fuel portion.

수두층 치료용 션트밸브의 압력-유량 제어특성 수치해석 (Numerical Simulation of The Pressure-Flow Control Characteristics of Shunt Valves Used to Treat Patients with Hydrocephalus)

  • 장종윤;이종선;서창민
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권5호
    • /
    • pp.403-412
    • /
    • 2001
  • 수두증 환자의 뇌압을 조절하기 위해 사용되는 션트밸브의 압력-유량제어 특성과 설계변수 변화에 따른 특성곡선의 변화를 수치적으로 해석 하였다. 해석에 사용된 션트밸브는 국내에서 설계 제작된 일정 압력형 다이아프램 타입이며 실험을 통하여 해석의 타당성을 검증하였다. 션트밸브 내부에 장착된 압력-유량 제어용 소형 다이아프램이 실리콘 일래스토머 계통의 유연한 재질이므로 유동구조 상호해석을 수행하였다 구조해석시의 재료 비선형성을 고려하여 고탄성 재료에 대한 므니 리블린(Mooney-Rivlin) 근사를 적용하였다. 수치해석결과 얻어진 압력-유량제어 특성곡선은 실험결과와 유사하였고 션트밸브를 통한 압력강하의 대부분은 소형 다이아프램에서 이루어짐을 확인할 수 있었다 본 연구에서 해석된 션트밸브의 압력-유량 특성곡선의 기울기는 7.37mm$H_2O$.hr/cc로서 상용 션트밸브의 기울기 평균값 0.40mm$H_2O$.hr/cc과 비슷하여 일정압력형 션트밸브의 특성을 잘 나타내었다. 오프닝압력의 크기는 밸브 다이아프램의 초기쳐짐량 크기에 의존하였고. 25mm$H_2O$와 80mm$H_2O$의 오프닝압력을 얻기 위해서는 10.2$\mu$m와 35.3$\mu$m의 초기쳐짐량이 필요하였다. 밸브가 열리면서 유동이 발생할 경우, 유동 오리피스 간극이 107m 이내이므로 션트밸브의 성공적인 동작을 위해서는 정밀설계와 제작기술이 요구된다. 본 연구를 통해 다이아프램의 초기쳐짐량과 유동 오리피스를 형성하는 다이아프램 끝단의 라운딩 크기가 압력-유량 특성곡선의 기울기에 영향을 미치는 주요 설계변수임을 확인하였다.

  • PDF

저속 영역에서 루버휜이 장착된 평판관형 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구 (Air-side Performance of Louver-Finned Flat Aluminum Heat Exchangers at a Low Velocity Region)

  • 조진표;오왕규;김내현;윤백
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1681-1691
    • /
    • 2002
  • The heat transfer and pressure drop characteristics of heat exchangers with louver fins were experimentally investigated. The samples had small fin pitches (1.0 mm to 1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). At a certain Reynolds number (critical Reynolds number), the flattening of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L$_{p}$F$_{p}$) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. It is suggested that, for proper assessment of the heat transfer behavior, the louver pattern in addition to the flow characterization need to be considered. The heat transfer coefficient increased as the fin pitch decreased. At low Reynolds numbers, however, the trend was reversed. Possible explanation is provided considering the louver pattern between neighboring fins. Different from the heat transfer coefficient, the friction factor did not show the flattening characteristic. The reason may be attributed to the form drag by louvers, which offsets the decreased skin friction at a low Reynolds number. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 90% of the friction factor within $\pm$10%.10%.

과냉 비등류의 실제건도와 보이드율에 관한 연구 (A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow)

  • 김종헌;김춘식;김경근;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

초소형 Lapple 사이클론 집진기의 수치적 성능평가 (Numerical Performance Evaluation of an Ultra-small Lapple Cyclone Separator)

  • 박수민;권재성
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.90-95
    • /
    • 2020
  • The purpose of this study is to numerically evaluate the collection performance of an ultra-small Lapple cyclone separator for 1~10 ㎛ particles introduced at flow rate of 10 L/min. The numerical evaluation reveals that a static pressure drop occurs more dominantly inside of the cyclone separator than at the inlet and the vortex finder. Also a fluid flow in the cyclone separator is confirmed to have a helical structure heading upward in the center of cyclone separator and downward in the vicinity of wall. The investigation on dust collection efficiency of the Lapple cyclone separator shows that particles of 4~8 ㎛ diameters are collected at very lower efficiency than other sizes. Then, the cut-point diameter of the cyclone separator is 1.48 ㎛.

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

소형 쉘앤튜브형 열교환기의 운전 조건에 따른 열유동 거동 특성 해석 (Analysis on Characteristics of Behavior of Thermal Flow According to Operation Conditions of Small-sized Shell and Tube-type Heat Exchanger)

  • 양영준
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1109-1115
    • /
    • 2023
  • The shell and tube-type heat exchanger was the most utilized in industrial field because of its simple structure and wide operation conditions and so on. This study was performed to investigate the characteristics of behavior of thermal flow according to operation condition of small-sized shell and tube-type heat exchanger. The operation conditions, here, were set up to flow rate of hot air with temperature of 100℃, number of baffle and cut rate of baffle(BCR) using numerical analysis. As the results, both mean relative pressure and relative pressure drop was increased with quadratic curve in case of less than BCR 25%, however, decreased linearly in case of more than BCR 25%. The collision with first baffle by flow velocity and temperature, of hot air, respectively, was depended on BCR. Further it showed that the behaviors between flow velocity and temperature were almost similar.

차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발 (High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant)

  • 김민철;박상규;이기형;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.