• Title/Summary/Keyword: Pressure chamber model test

Search Result 111, Processing Time 0.022 seconds

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

Study on the performance improvement of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 성능향상에 관한 연구)

  • Bae, Young-Woo;Kim, Do-Hyung;Hong, Moon-Geun;Lee, Soo-Yong;Jang, Ki-Won
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the steady operational state. Although it has been showed that a EM(Engineering Model) with a high discharge coefficient value compared with the TM(Technology Model) fills the overall performance requirements, additional design modifications in some critical parts of the EM were conducted to improve the performance. The configurations of the pressure-control body, the middle flange, and the rips of the inlet body of the EM were modified and the performance tests have been performed with test models. Consequently, the intended improvements have been verified by the performance tests.

Effects of Characteristic Length Variation for Thrust Chamber on the Hot-fire Performance of Hydrazine Thruster (하이드라진 추력기의 추력실 특성길이 변화가 연소성능에 미치는 영향)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • A ground firing test for hot-fire performance evaluation according to the characteristic length($L^*$) variation of thrust chamber was carried out for the hydrazine thruster which may be employed in space launch vehicles. A scrutiny into the performance characteristics of each thruster is made in terms of thrust, specific impulse, response characteristics, and characteristic velocity at steady-state firing mode with propellant inlet pressure of 2.41 MPa (350 psia). Through the test results, it has been verified that performance of characteristic velocity and specific impulse degrades as the characteristic length deviates from that of the standard model. Thus, it is confirmed that the thrust chamber configuration of standard model was suitably designed for the requirement specified.

Hot-firing Test of Technology Demonstration Model Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 가스발생기 기술검증시제의 연소시험)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.225-228
    • /
    • 2009
  • Hot-firing tests were performed on the gas generator which is a technology development/demonstration model for a 75 ton-class liquid rocket engine. A heat-sink type combustion chamber was used for initial performance examination of the injector and mixing head. This paper explains not only preparation works for hot-firing tests but also the acquired results such as pressure, temperature distribution, and pressure fluctuation.

  • PDF

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ II (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 II)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Kim, Hak-Chul;Moon, Keun-Hwan;Choi, Won-Jun;Jung, Sik-Hang;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.50-54
    • /
    • 2011
  • This paper presents a two-phase model for hybrid rocket internal ballistics design using $N_2O$ as oxidizer The two-phase model results are compared with data obtained from static firing test. Two-phase model is suitable for blow-down type with saturated compressible fluid as $N_2O$, presented the result by Part 1. HDPE as Fuel, and $N_2O$ as oxidizer were used during the static firing test. The combustor were designed for an average thrust of 30 kgf where oxidizer tank pressure in set to 50 bar. The numerical results of internal ballistic showed good agreements with static firing test results where thrust, oxidizer tank pressure and chamber pressure are compared.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Evaluation of Pile Bearing Capacity and Scale Effect Using Model Pile Test (모형실험을 통한 말뚝지지력의 평가 및 치수효과의 비교분석)

  • 이인모;이정학
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 1993
  • Model pile tests in calibration chamber are performed in order to study the two factors that the pile bearing capacity is significantly influenced by. Those factors are the critical depth concept and the scale effect caused by pile diameters. Firstly, the predicted values of end bearing capacity from the various static formulae were compared with the measured ones from model pile tests. Secondly, the critical depth concept and the scale effect were investigated by using two different soil conditions in a series of calibration chamber tests : the one is uniform sand : and the other is weathered granites overlayered by sand. Main results obtained from the model tests can be summarized as follows : (1) The end bearing capacity was increased with pile penetration depth up to penetration ratio of 7 to 8 when the cell pressure is high, and the critical depth was observed in the current chamber tests with uniform sand layer , (2) The predicted end bearing capacities were mostly lager than the measured, and it was found that the differences between the predicted and the measured values became smaller as the pile penetration ratio was increased : (3) The end bearing capacity of the small diameter pile in weathered granites layer was mostly less than that of the larger pile, while in uniform sand layer it was vice.

  • PDF

Thrust performance at the various pintle shapes and positions (핀틀 형상 및 위치에 따른 추력 성능)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Jang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.89-93
    • /
    • 2008
  • The effect of pintle shapes and position to the thrust performance of Solid Rocket Motor was studied by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS in Fluent, Spalart-Allmaras model was better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. When nozzle throat area was decreased, magnitude of thrust was increased. The bigger pintle size was, the more thrust of pintle tip pressure was obtained. Meanwhile the more thrust of nozzle and chamber pressure decreased. Hence, total thrust of big pintle was less than a small pintle under same throat area condition.

  • PDF

A Study on Numerical Technique of the Hardened Grout Formed by Grouting (약액주입 시 형성된 고결체의 수치해석 기법 연구)

  • Lee, Jong-Hwi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.27-37
    • /
    • 2011
  • Recently, pressure grouting is widely being used in construction site for strength improvement of ground and water proof, reinforcement and so on. It is necessarily required to estimate an appropriate injection pressure and injection time for economical and reasonable construction in the site through the size and shape of the hardened grout measured according to ground condition. However, sampling for the hardened grout is time-consuming and needs high cost on preliminary test in the site. The system which could predict the size and shape of the hardened grout does not exist until now. Thus, numerical method based on VOF method and porous model was used for the calibration chamber injection test with injection pressure (50 kPa, 100 kPa, 150 kPa) in this study. The results indicate that the numerical technique based on VOF method and porous model among CFD analysis is expected to be a basic study for the prediction of the behavior and solidification of pressure grouting.

High Temperature and High Humidity Test for MEMS Devices (MEMS 디바이스의 고온고습 신뢰성시험)

  • Lee, Y.G.;Park, B.H.;Jang, J.S.
    • Journal of Applied Reliability
    • /
    • v.5 no.4
    • /
    • pp.487-500
    • /
    • 2005
  • MEMS devices usually have micro actuators contained in a cavity, If the pressure level of testing chamber is higher than that of cavity, moisture will ingress into the cavity, which may cause critical failure such as stiction of the moving parts. To design an accelerated life test based on high temperature and high humidity, such a phenomena should be considered. In this study, a throughput model that can estimate the amount of moisture ingress is used to decide the testing time and conditions of a high temperature and high humidify test.

  • PDF