• Title/Summary/Keyword: Pressure altitude

Search Result 222, Processing Time 0.026 seconds

Flow Control in the Vacuum-Ejector System (진공 이젝터 시스템의 유동 컨트롤)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.321-325
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, whereas the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is also found that there is no change in the performance of diffuser with orifice at its inlet, in terms of its pressure recovery. Hence an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser (초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구)

  • Kim, Jong Rok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • A study is analyzed on the adverse pressure gradient and the transient regime of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and static temperature of vacuum chamber according to pressure variation of rocket engine combustion chamber. Combustion gas flow into the vacuum chamber during operation of the supersonic diffuser. According to this phenomenon, the pressure and the temperature rise in the vacuum chamber were observed. Thus, the protection system will be necessary to prevent the pressure and temperature rise in the transition process during operation of the subsonic diffuser.

Tribological Behavior of MZ/LZT disk under Various Environmental Conditions (환경에 따른 MZT/LZT 디스크의 tribological 특성)

  • 박용식;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.53-60
    • /
    • 1999
  • As the flying height decreased, it is essential that hard disk drives perform reliable under various environmental conditions. In this paper the tribological characteristics of a head/disk interface are investigated under various temperature, relative humidity, altitude and outgas conditions. Specially, Contact-Start-Stop(CSS) tests were performed to assess the stiction, acoustic emission, slider take-off behavior, and track average amplitude(TAA). It is shown that the surface damage and head failure are accelerated by high temperature and humidity as well as low ambient pressure.

  • PDF

Ground Effect Analysis of Tilt-Rotor Aircraft (틸트 로터 항공기의 지면 효과 분석)

  • Kim, Cheol-Wan;Chang, Byung-Hee;Lee, Jang-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.427-430
    • /
    • 2006
  • The ground effect on tilt-rotor UAV is analyzed by simulating the hovering UAV for various altitudes. Ground effect increases pressure beneath the UAV body and generates additional lifting force. The ground effect diminishes at altitude 3m and hovering UAV generates constant lifting force above 3m.

  • PDF

A Study on Performance Characteristics of Second Throat Exhaust Diffuser with Back Pressure (고공환경 모사용 이차목 디퓨저의 배압에 따른 성능 특성)

  • Kim, Wan Chan;Yu, I Sang;Kim, Tae Woan;Park, Jin Soo;Ko, Young Sung;Kim, Min Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.563-570
    • /
    • 2017
  • Experimental and numerical studies were performed to investigate the performance and internal flow characteristics of a supersonic second throat exhaust diffuser (STED) with back pressure ($P_a$). An ejector system was used to vary the back pressure ($P_a$) conditions. The operating gas for the STED and the ejector was high pressure nitrogen at room temperature. When the back pressure ($P_a$) at a constant nozzle inlet pressure $P_0$) decreases, the pressure recovery location moves downstream. If the pressure ratio $P_0/P_a$) is the same, even if the nozzle inlet pressures $P_0$) are different, the diffuser's internal flow pattern and starting pressure ratio ($(P_0/P_a)_{st}$) are almost the same.

Research Trends of an E-D Nozzle for Altitude Compensation (고도 보정용 확장-굴절(E-D) 노즐의 국외 연구 동향)

  • Moon, Taeseok;Park, Sanghyeon;Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.844-854
    • /
    • 2017
  • The Expansion-Deflection(E-D) nozzle is a nozzle that has a performance gain through the altitude compensation effect by changing the effective area within the nozzle according to the altitude. An E-D nozzle has been known to reduce the length of the nozzle and achieve the payload gain of the launch vehicle. Due to the potential advantages of an E-D nozzle, related research has been carried out in the United Kingdom, Germany, Australia and Europe etc. In the UK, the flow characteristics of the E-D nozzle and the performance comparison with the dual-bell nozzle which is altitude compensation nozzle were studied. In order to understand the transition characteristics of the E-D nozzle in DLR, the transition characteristics according to the nozzle pressure ratio change were analyzed. In Europe, numerical study using the E-D nozzle concept on upper stage of the launch vehicle Ariane 5 ESC-B was carried out to confirm the possibility of payload gain according to the nozzle length reduction. In this paper, research trends of an E-D nozzle performed outside the country are classified and analyzed according to their characteristics and utilized as basic data of E-D nozzle research in the future.

Performance Study on the Supersonic Diffuser Contraction Ratio of High-Altitude Test Facility for Hypersonic Propulsion (극초음속 추진기관 고공환경 시험장치의 이차목 디퓨저 수축비에 따른 성능연구)

  • Lee, Seongmin;Shin, Donghae;Shin, Mingyu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1026-1030
    • /
    • 2017
  • In this study, we propose an supersonic diffuser that is one of test facilities for hypersonic propulsion engine, and conduct numerical analyses and cold flow test using each diffuser as the corresponding variable. Specifically, inner flow characteristics are computed based on mach number and pressure by the numerical analyses. Also, we test through cold flow test the pressure in the vacuum chamber and the inner pressure that is formed by the wall pressure. Finally, we compare the results from cold flow test and the numerical analyses, and report a preliminary result that might be useful to construct a better test facility of hypersonic propulsion engine in the future.

  • PDF

WRF Sensitivity Experiments on the Formation of the Convergent Cloud Band in Relation to the Orographic Effect of the Korean Peninsula (한반도 지형이 대상수렴운의 생성에 미치는 영향에 관한 WRF 민감도 실험)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.51-66
    • /
    • 2015
  • This study was conducted to perform various sensitivity experiments using WRF (Weather Research and Forecasting) model in order to determine the effects of terrains of the Korean Peninsula and the land-sea thermal contrast on the formation and development of the convergent cloud band for the cases of 1 February 2012. The sensitivity experiments consist of the following five ones: CNTL experiment (control experiment), and TMBT experiment, BDMT experiment and ALL experiment that set the terrain altitude of Taeback Mountains and Northern mountain complex as zero, respectively, and the altitude of the above-mentioned two mountains as zero, and LANDSEA experiment that set to change the Korean Peninsula into sea in order to find out the land-sea thermal contrast effect. These experiment results showed that a cold air current stemming from the Siberian high pressure met the group of northern mountains with high topography altitude and was separated into two air currents. These two separated air currents met each other again on the Middle and Northern East Sea, downstream of the group of northern mountains and converged finally, creating the convergent cloud band. And these experiments suggested that the convergent cloud band located on the Middle and Northern East Sea, and the cloud band lying on the southern East sea to the coastal waters of the Japanese Island facing the East Sea, were generated and developed by different dynamical mechanisms. Also it was found that the topography of Taeback Mountains created a warm air advection region due to temperature rise by adiabatic compression near the coastal waters of Yeongdong Region, downstream of the mountains. In conclusion, these experiment results clearly showed that the most essential factor having an effect on the generation and development of the convergent cloud band was the topography effect of the northern mountain complex, and that the land-sea thermal contrast effect was insignificant.

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

Thrust Characteristics of Through-type Pintle Nozzle at Operating Altitudes Conditions (작동 고도에 따른 관통형 핀틀 노즐의 추력 특성 연구)

  • Jeong, Kiyeon;Hong, Ji-Seok;Heo, Junyoung;Sung, Hong-Gye;Yang, Juneseo;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Numerical simulations have been performed to investigate thrust characteristics of a through-type pintle nozzle with or without flow separation at various operating altitudes. The low Reynolds number $k-{\varepsilon}$ with compressibility correction proposed by Sarkar are applied. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. The flow separation in the pintle nozzle disappears and jet plume strongly expands as its operating altitude increases. To evaluate the thrust characteristics, the momentum term and pressure term of thrust are analyzed. Thrust and thrust coefficient at altitude 20 km are about 10% more than them at the ground 0km.