• Title/Summary/Keyword: Pressure Vessel Piping

Search Result 73, Processing Time 0.019 seconds

Effect of Side Groove on the Elastic Plastic Fracture Toughness of Gas Piping Material (가스배관재의 탄소성파괴인성에 미치는 측면홈 영향)

  • 임만배;차귀준;윤한기;공유식;김정호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.63-68
    • /
    • 2001
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ATM E813-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_IC. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.

  • PDF

A Study on Fatigue Crack Growth Behavior and R-Curve Characteristics of Gas Piping Material (가스배관재의 피로균열진전거동과 파괴저항특성곡선에 관한 연구)

  • Son, J.D.;Lim, M.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-133
    • /
    • 2007
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_{IC}$. It is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases a phenomenon of the tunneling and shear lip by the side groove.

  • PDF

Effect of Side Grooved on the Elastic Plastic Fracture Toughness of Gas Piping Meterial (가스배관재의 탄소성파괴인성에 미치는 측면홈영향)

  • 임만배;차귀준;윤한기;김정호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.350-356
    • /
    • 2001
  • SG-50 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the J$_{IC}$. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.e.

  • PDF

High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant (차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발)

  • Kim, Min-Chul;Park, Sang-Gyu;Lee, Ki-Hyoung;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

Evaluation of Fracture Toughness for SA508 Gr. 3 Reactor Pressure Vessel Steel Using Bimodal Master Curve Approach (이봉분포 마스터커브를 이용한 SA508 Gr. 3 원자로용기강의 파괴인성 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2017
  • The standard master curve (MC) approach has the major limitation because it is only applicable to homogeneous datasets. In nature, materials are macroscopically inhomogeneous and involve scatter of fracture toughness data due to various deterministic material inhomogeneity and random inhomogeneity. RPV(reactor pressure vessel) steel has different fracture toughness with varying distance from the inner surface of the wall due to cooling rate in manufacturing process; deterministic inhomogeneity. On the other hand, reference temperature, $T_0$, used in the evaluation of fracture toughness is acting as a random parameter in the evaluation of welding region; random inhomogeneity. In the present paper, four regions, the surface, 1/8T, 1/4T and 1/2T, were considered for fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to investigate deterministic material inhomogeneity and random inhomogeneity. Fracture toughness tests were carried out for four regions and three test temperatures in the transition region. Fracture toughness evaluation was performed using the bimodal master curve (BMC) approach which is applicable to the inhomogeneous material. The results of the bimodal master curve analyses were compared with that of conventional master curve analyses. As a result, the bimodal master approach considering inhomogeneous materials provides better description of scatter in fracture toughness data than conventional master curve analysis. However, the difference in the $T_0$ determined by two master curve approaches was insignificant.

Measurement of Inner Defects and out of Plane Deformation of Pressure Vessel in Piping of Circulation System Using Shearography (전단간섭법을 이용한 배관 순환 시스템에서의 압력용기 내부결함 및 면외변형 측정)

  • Kang, Chan-Geun;Kim, Hyun-Ho;Jung, Hyun-Il;Choi, Tae-Ho;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • Wall thinning defects can occur in the pressure vessels used in a variety of industries. Such defects are related to the flow velocity. Considering the fact that such vessels constitute up to 70 or 80% of the plant structures in a power plant, it is important to measure internal defects as part of a safety evaluation. In this study, optical measurement were applied in a non-destructive evaluation using shearography to ensure the safety and improve the reliability of a power plant through the non-contact, non-destructive evaluation of pressure vessels. In order to verify whether the pressure vessels contained faults, experimental and analytical investigation were conducted to measure any internal defects and out-of-plane deformation from inner temperature changes and pressure changes in the piping of the circulation system. The most important factors in this research were the thickness, width, and length of a defect. An increase in these could confirm an increase in the deformation. Thus, internal defects in a pressure vessel were measured using shearography, which made it possible to ensure the reliability and integrity of the pipe.

Through Thickness Microstructure and Mechanical Properties in a Forged Thick Section Mod. 9Cr-1Mo Steel (고온 원자로용 Mod. 9Cr-1Mo강 후판재의 깊이에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Sun-Hee;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Kim, Sun-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the effects of through thickness on the mechanical properties and microstructural features in Mod. 9Cr-1Mo steels for RPVs. The microstructures at all locations were typically tempered martensite, but small amount of delta ferrite was observed at the center region. The prior austenite grain size increased with the depth from the surface. The yield strengths of center and 1/4T location were higher than that of surface by 30MPa. The impact toughness of center was low compared to those of other specimens. Also, upper shelf energy was low at the center. The toughness deterioration in center might be caused by larger size of the prior austenite grains and existence of the delta ferrite.

Improvement of Long-term Creep Life Prediction Method of Gr. 91 steel for VHTR Pressure Vessel (초고온가스로 압력용기용 Gr. 91 강의 장시간 크리프 수명 예측 방법 개선)

  • Park, Jae-Young;Kim, Woo-Gon;EKAPUTRA, I.M.W.;Kim, Seon-Jin;Kim, Min-Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • Gr. 91 steel is used for the major structural components of Generation-IV reactor systems, such as a very high temperature reactor(VHTR) and sodium-cooled fast reactor(SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is important for a design application of Gr. 91 steel. In this study, a number of creep rupture data were collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: the single-C method in Larson-Miller(L-M) parameter, multi-C constant method in the L-M parameter, and a modified method("sinh" equation) in the L-M parameter. The results of the creep-life prediction were compared using the standard deviation of error value, respectively. Modified method proposed by the "sinh" equation revealed better agreement in creep life prediction than the single-C L-M method.

Development of a Failure Evaluation Diagram and a Database by Two Criteria Method (2기준법에 의한 파괴평가선도 및 데이터베이스 구축의 시도)

  • 이종형;심우진;황은하;강용구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1181-1185
    • /
    • 1990
  • A failure evaluation diagram to evaluate fatigue fracture was developed. The relation between the fatigue limit and the threshold stress intensity factor for the short-cracked specimens of various materials including a piping carbon steel can be rationally predicted by the proposed method. It is shown that the coupled failure evaluation diagram for fatigue and ductile fracture is expecially useful for evaluation of the flaw tolerance as well as the margin of the safety of the pressure vessel and piping. Further, accumulation of fatigue data will be needed to construct an accurate fatigue failure evaluation diagram.

Finite Element Analysis and Development of Interim Consolidated 5-N Curve for Fatigue Design of Welded Structure (용접구조물의 피로설계를 위한 유한요소 해석 및 통합 피로선도 초안 개발)

  • Kim, Jong-Sung;Jin, Tae-Eun;Hong, Jeong-Kyun;P. Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.724-733
    • /
    • 2003
  • Fatigue design rules for welds in the ASME Boiler and Pressure Vessels Code are based on the use of Fatigue Strength Reduction Factors(FSRF) against a code specified fatigue design curve generated from smooth base metal specimens without the presence of welds. Similarly, stress intensification factors that are used in the ASME B3l.1 Piping Code are based on component S-N curves with a reference fatigue strength based on straight pipe girth welds. But the determination of either the FSRF or stress intensification factor requires extensive fatigue testing to take into account the stress concentration effects associated with various types of component geometry, weld configuration and loading conditions. As the fatigue behavior of welded joints is being better understood, it has been generally accepted that the difference in fatigue lives from one type of weld to another is dominated by the difference in stress concentration. However, general finite element procedures are currently not available for effective determination of such stress concentration effects. In this paper, a mesh-insensitive structural stress method is used to re-evaluate the S-N test data, and then more effective method is proposed for pressure vessel and piping fatigue design.