• Title/Summary/Keyword: Pressure Vessel Design

Search Result 341, Processing Time 0.026 seconds

Research on Laminate Design Parameters to Maximize Performance Index of Composite Pressure Vessel (복합재 압력용기의 성능지수 최대화를 위한 적층 설계변수 연구)

  • Jeong, Seungmin;Hwang, Taekyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In this paper the laminate design parameters are researched to maximize the performance index of a composite pressure vessel. To maximize the performance index, the three design variables that the thickness of each of helical and hoop layers and the length of hoop layer are considered under the assumption of fixed internal space. To optimize the variables, the response surface method is introduced for construction of the surrogate model and the ANOVA(analysis of variance) is performed to evaluate the effects of the variables. The optimization problem is formulated to maximize performance index under the burst pressure constraint. To verify the effectiveness of the research, numerical analyses are performed for the optimum model.

Vessel failure sensitivities of an advanced reactor for SBLOCA

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.185-191
    • /
    • 2020
  • Plant-specific analyses of an advanced reactor have been performed to assure the structural integrity of the reactor pressure vessel during transient conditions, which are expected to initiate pressurized thermal shock (PTS) events. The vessel failure probabilities from the probabilistic fracture mechanics analyses are combined with the transient frequencies to generate the through-wall cracking frequencies, which are compared to the acceptance criterion. Several sensitivity analyses are performed, focusing on the orientations and sizes of cracks, the copper content, and a flaw distribution model. The results show that the integrity of the reactor vessel is expected to be maintained for long-term operation beyond the design lifetime from the PTS perspective using the design data of the advanced reactor. Moreover, a fluence level exceeding 9×1019 n/㎠ is found to be acceptable, generating a sufficient margin beyond the design lifetime.

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

Design of the Vacuum Vessel for the KT-2 Project

  • S.R.In;Yoon, B.J.;S.H.Jeong;Lee, B.S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.438-442
    • /
    • 1996
  • The design of the vacuum vessel of KT-2(a large-aspect-ratio, mid-size tokamak) is presented. The KT-2 vacuum vessel provides necessary environments to contain a plasma of double-null configuration with elongation of up to 1.8. The vacuum vessel is designed as an all-metal welded structure. Eddy currents are induced on the vessel during all stages of the plasma operation. Influences of the continuous vessel on the plasma were investigated. No significant effect of the vessel on the plasma in every aspect of null formation, plasma initiation, plasma control was found. Stresses and deformations in the vessel by atmospheric pressure and electromagnetic forces due to the eddy currents were calculated using 3D FEM code.

  • PDF

Calculation of Reactor Pressure Vessel Fluence Using TORT Code

  • Shin, Chul-Ho;Kim, Jong kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.771-776
    • /
    • 1998
  • TORT is employed for fast neutron fluence calculation at the reactor pressure vessel. KORI Unit 1 reactor at cycle 1 is modeled for this calculation. Three-dimensional cycle averaged assembly power distributions for KORI Vnit 1 at cycle 1 are calculated by using the core physics code, NESTLE 5.0. The root mean square error is within 4.3% compared with NDR (Nuclear Design Report) far all burnup steps. The C/E (Calculated/Experimental) values for the in-vessel dosimeters distribute between 0.98 and 1.36. The most updated cross-section library. BUGLE-96 based on ENDF/B-VI is used for the neutron fluence calculation. The makimum fast neutron nun calculated on reactor pressure vessel for KORI Unit 1 operated for 411.41 effgctive full power days is 1.784x10$^{18}$ n/$\textrm{cm}^2$. The position of the maximum neutron fluence in RPV wall 1/4 T is nearby 60cm below the midplane at zero degree.

  • PDF

Evaluation of the Preirradiation Baseline Material Characteristics for Yonggwang Nuclear Reactor Pressure Vessel (영광 원자력 발전소 원자로 소재의 가동전 재료 물성 특성)

  • Kim, K.C.;Kim, J.T.;Suk, J.I.;Kwon, H.K.;Sung, U.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.153-158
    • /
    • 2000
  • Nuclear reactor pressure vessel should be safety even in the case that hypothetical defects with allowable size are in vessel. Therefore, the materials should have excellent fracture resistance characteristics. The purpose of this study is to analyze the results of preirradiation baseline test of nuclear pressure vessel for Yonggwang Unit 5/6. In experiments, drop weight tests and impact tests are carried out to obtain nil-ductility transition reference temperature, $RT_{NDT}$ and static and dynamic fracture toughness tests are performed to compare with $K_{IR}$ curve in accordance with ASME Sec.III. The test results show that the materials had sufficiently fracture resistance characteristics for 40 years of design life.

  • PDF

Shape Design of Pressure Vessel Dome (압력용기의 도움 형상설계)

  • 이영신;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1057-1062
    • /
    • 1991
  • 본 연구에서는 형상을 미소하게 변화시켜 좌굴을 방지할 수 있는 최적 도움형 상을 설계하였고 타원형, 토리-구형도움의 가장 얕은 형태의 최적도움형상도 설계하였] 으며, 실제 적용예를 수치로 제시하였다. 또한 수압(hydrostatic pressure)을 받는 수조(reservoir)의 도움형상에 대해서도 직경 및 길이 변화에 따른 형상설계 결과를 제시하였다.

The Prediction of Structural Behavior for Composite Pressure Vessel with Changed Dome Shape (돔 형상 변화에 따른 복합재 압력용기의 구조 거동 예측)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyung-Kun;Doh, Young-Dae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.288-292
    • /
    • 2008
  • Dome shape design method of filament wound (FW) composite pressure vessel, which can create various dome shape with fixed boss opening, was suggested. And, the performance indices (PV/W) for composite pressure vessel with same boss opening but different dome shape were investigated by finite element analysis (FEA) and hydro-test. The FEA showed good agreement with test results for burst pressure. Generally, as the dome shape of pressure vessel was changed to flat dome, the inner volume is increased and the burst pressure is decreased. In the case of above ${\rho}_o$=0.54, the performance index showed decreased value due to the low burst pressure. However, at ${\rho}_o$=0.35, the dome shape change brings not significant reduction of burst pressure and performance index.

  • PDF

Stress analysis of the KSTAR vacuum vessel under thermal and electromagnetic loads (KSTAR 진공용기 열 및 전자기력 하중에 의한 응력해석)

  • Cho, S.;Kim, J.B.;Her, N.I.;Im, K.H.;Sa, J.W.;Yu, I.K.;Kim, Y.C.;Do, C.J.;Kwon, M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.325-330
    • /
    • 2001
  • One of the principal components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak structure is the vacuum vessel, which acts as the high vacuum boundary for the plasma and also provides the structural support for internal components. Hyundai Heavy Industries Inc. has performed the engineering design of the vacuum vessel. Here the overall configuration of the KSTAR vacuum vessel was briefly described and then the design methodology and the analysis results were presented. The vacuum vessel consists of double walls, several ports, leaf spring style supports. Double walls are separated by reinforcing ribs and filled with baking/shielding water. The overall external dimensions of the main body are 3.39 m high, 1.11 m inner radius, 2.99 m outer radius, and made of SA240-316LN. The vacuum vessel was designed to be capable of achieving the base pressure of $1\times10^{-8}$ Torr, and also to be structurally capable of sustaining the vacuum pressure, the electromagnetic and thermal loads during plasma disruption and bakeout, respectively. The vacuum vessel will be baked out maximum $150^{\circ}C$ by hot pressurized water through the channels formed between double walls and the reinforcing ribs. A 3-D temperature distribution and the resulting thermal loads in the vessel were calculated during bakeout. It was found that the vacuum vessel and its supports were structurally rigid based on the thermal stress analysis. The maximum electromagnetic loads on the vacuum vessel induced by eddy and halo currents resulting from the engineering plasma radial and vertical disruption scenarios have been estimated. The stress analyses have been performed based on these electromagnetic loads and the resulting stresses at he critical locations of the vacuum vessel were within the allowable stresses.

  • PDF

Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident of NPP (원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석에 관한 연구)

  • Hwang, K.M.;Jin, T.E.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with a design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena may arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated collant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF