DOI QR코드

DOI QR Code

Research on Laminate Design Parameters to Maximize Performance Index of Composite Pressure Vessel

복합재 압력용기의 성능지수 최대화를 위한 적층 설계변수 연구

  • Jeong, Seungmin (The 4th R&D Institute - 1, Agency for Defense Development) ;
  • Hwang, Taekyung (The 4th R&D Institute - 1, Agency for Defense Development)
  • Received : 2017.06.03
  • Accepted : 2017.09.12
  • Published : 2018.06.01

Abstract

In this paper the laminate design parameters are researched to maximize the performance index of a composite pressure vessel. To maximize the performance index, the three design variables that the thickness of each of helical and hoop layers and the length of hoop layer are considered under the assumption of fixed internal space. To optimize the variables, the response surface method is introduced for construction of the surrogate model and the ANOVA(analysis of variance) is performed to evaluate the effects of the variables. The optimization problem is formulated to maximize performance index under the burst pressure constraint. To verify the effectiveness of the research, numerical analyses are performed for the optimum model.

본 연구에서는 복합재 압력용기의 성능지수를 최대화하기 위한 적층 설계변수의 영향도 평가 및 최적설계를 수행하였다. 성능지수를 최대화하기 위하여 압력용기의 내부체적이 고정되어 있다는 가정 하에 헬리컬 및 후프 층의 두께와 후프 층의 길이, 총 세 가지 변수를 고려하였다. 선정된 변수들의 최적화를 위하여 대체모델의 구축에 필요한 반응표면법이 도입되었고, 변수의 영향도를 평가하기 위한 분산분석이 수행되었다. 최적설계 문제는 내압성능 제약조건 하에 성능지수를 최대화하는 문제로 정식화하였다. 도출된 최적화 모델에 대한 추가적인 수치해석을 통해 본 연구의 효용성을 입증하였다.

Keywords

References

  1. Schuerch, H., "Analytical Design for Optimum Filamentary Pressure Vessels," AIAA Launch and Space Vehicle Shell Structures Conference, Palm Springs, C.A., U.S.A., AIAA 2914-63, Apr. 1963.
  2. Ger, G.S., Hwang, D.G., Chen, W.Y. and Hsu, S.E., "Design and Fabrication of High Performance Composite Pressure Vessels," Theoretical and Applied Fracture Mechanics, Vol. 10, No. 2, pp. 157-163, 1988. https://doi.org/10.1016/0167-8442(88)90007-9
  3. Tackett, E.W., Merrell, G.A. and Kulkarni, S.B., "Carbon Pressure Vessel Performance with Changing Dome Profiles," 20th Joint Propulsion Conference, Brigham City, UT, U.S.A., Jun. 1984.
  4. Gray, D.L. and Moser, D.J., "Finite Element Analysis of a Composite Overwrapped Pressure Vessel," 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, F.L., U.S.A., AIAA 2004-3506, Jul. 2004.
  5. Collins, T., "Impact Damage and Residual Strength in Graphite Epoxy, Composite, Metal Lined, Pressure Vessels," 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, C.A., U.S.A., AIAA 95-2910, Jul. 1995.
  6. Kawahara, G. and McCleskey, S.F., "Titanium-Lined, Carbon Composite Overwrapped Pressure Vessel," 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Lake Buena Vista, F.L, U.S.A, AIAA 96-2751, Jul. 1996.
  7. Sorrentino, L. and Tersigni, L., "Performance Index Optimization of Pressure Vessels Manufactured by Filament Winding Technology," Advanced Composite Materials, Vol. 24, No. 3, pp. 269-285, 2015. https://doi.org/10.1080/09243046.2014.887429
  8. Jeong, S.M., Kim, H.G. and Hwang, T.K., "Shape Optimization of the Metal Boss for a Composite Motor Case," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 6, pp. 29-37, 2016. https://doi.org/10.6108/KSPE.2016.20.6.029